Index

A
- AADC. See Aromatic amino acid decarboxylase
- AA V. See Adeno-associated virus
- Acetylcholine (ACh), functional imaging, 174–175
- ACh. See Acetylcholine
- Adaptive immune system
 - central nervous system, 381–382
 - cross-regulation with innate immunity in central nervous system, 382–384
 - misfolded proteins in immune activation, 384–385
 - Parkinson’s disease dysfunction, 385–388
 - prospects for study, 391
 - therapeutic targeting, 388–391
- Adeno-associated virus (AA V)
 - gene therapy vectors, 129
 - mouse models of Parkinson’s disease, 265
- Aging
 - DNA polymerase-γ studies in mutant mice, 218
 - macroautophagy in protein quality control effects, 336
 - mitochondria aging hypothesis, 211–213, 305–306
 - Akinesis, motor control, 196–198
 - α-Methyl-p-tyrosine, animal models of Parkinson’s disease, 24
- α-Synuclein (SNCA)
 - aggregation potential, 69–70
 - autophagy
 - autophagy response, 317–318, 337
 - chaperone-mediated autophagy degradation, 316
 - inhibition by mutant forms, 316–317, 336–337
 - mitophagy role, 318
 - autosomal dominant Parkinson’s disease clinical features, 24, 54–55
 - biomarkers, 77–78
 - function, 67–69
 - gain-of-function and accumulation, 72–74
 - gene dosage in Parkinson’s disease, 66
 - knockdown therapy, 135–136
 - Lewy body, See Dementia with Lewy bodies; Lewy body
 - lipid interactions, 71–72
 - loci. See PARK1; PARK4
 - misfolded proteins in immune activation, 384–385
 - pathogenic effects
 - cytoskeleton, 74–75
- endoplasmic reticulum/Golgi apparatus, 76
- lysosome, 75
- mitochondria, 75
- nucleus, 76
- proteasome, 75
- secretion and uptake, 77
- synapse, 74
- posttranslational modifications, 70–71
- protein–protein interactions, 71
- structure, 67–68
- synucleopathy models, 69
- therapeutic targeting, 77–78
- transgenic mouse, 266–267
- ubiquitin proteasome system effects of mutation, 331–332
- AMPA receptor, neuronal phenotype of Parkinson’s disease, 204
- Amphetamines, animal models of Parkinson’s disease, 248–249
- Animal models. See α-Methyl-p-tyrosine; Amphetamines; Drosoφhila; 6-Hydroxydopamine; Isoquinoline; Lipopolysaccharide; 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Mouse models; Paraquat; Reserpine; Rotenone
- Apoptosis. See Programmed cell death
- Aromatic amino acid decarboxylase (AADC), gene therapy, 130–131
- ATP13A2, mutation
 - Parkinson’s disease, 57–58
 - ubiquitin proteasome system dysfunction, 337–338
- Autophagy
 - α-synuclein
 - autophagy response, 317–318, 337
 - chaperone-mediated autophagy degradation, 316
 - inhibition by mutant forms, 316–317, 336–337
 - mitophagy role, 318
 - cytoplasmic cell death
 - overview, 355
 - paranatos, 355–356
 - necroptosis, 356
 - DJ-1 role, 322
 - functions, 315–316
 - leucine-rich repeat kinase-2 role, 321–322
 - macroautophagy in protein quality control

© 2012 by Cold Spring Harbor Laboratory Press
Autophagy

Continued

aging effects, 336
impaired in Parkinson's disease, 336
overview, 334–335
oxidative stress effects, 335–336
mitophagy
parkin-dependent mitophagy, 320
Parkinson's disease, 319–320
molecular mechanisms, 315
organelle specificity, 314–315
PINK1 function
isoforms, 321
overview, 320–321
protective function, 321
programmed cell death
defects in Parkinson's disease, 353–354
mitophagy, 354–355
overview, 353–354
prospects for study in Parkinson's disease,
322, 356–357
types, 313–314, 333–334
Autosomal dominant Parkinson's disease
clinical features, 24–25
gene mutations, 24–25, 54–55
mouse models, 263
pedigrees, 50, 52–53
Autosomal recessive Parkinson's disease
clinical features, 25–26
gene mutations, 25–26, 56–57
mouse models, 264
pedigrees, 50, 52–53
B
Basal ganglia
function and motor symptoms, 198–199
functional imaging at rest, 168
functional organization
classic model, 152–154
corticostratial connections, 155
corticosubthalamic connections, 155–156
domains, 154–155
subcortical connections, 156
gross anatomy, 143–144
nuclei
globus pallidus external segment, 150
substantia nigra pars compacta, 151–152
subthalamic nucleus, 150–151
pathophysiology
dyskinesia, 157
parkinsonism, 156–157
striatum
compartments, 146–147
output nuclei
globus pallidus internal segment, 149
substantia nigra pars reticulata, 149–150
projections
afferents, 147–149
efferents, 149
neurons and interneurons, 144–145
Bcl-2 proteins, apoptosis mediation, 349–350
β-Glucocerebrosidase (GBA)
α-synuclein accumulation effects, 75
mutation and Parkinson's disease risk, 58–59
Bioinformatics
biomarker discovery, 118–120
overview, 115–116
Braak staging, Parkinson's disease, 41
Bradykinesia
motor control, 192–196
Parkinson's disease, 18
speed selection abnormalities, 186
C
Calcium flux
L-type calcium channels
dopaminergic neuron susceptibility role in Parkinson's disease, 214–216
therapeutic targeting, 221–223
metabolic burden on neurons, 205–207
mitochondria in homeostasis, 207–208, 294, 301–303
neuronal pacemaking and ionic homeostasis challenge, 208–209
neuron vulnerability in Parkinson's disease

dopaminergic neurons, 213–220
nondopaminergic neurons, 220
Caspase, activation in apoptosis, 348, 350
CBD. See Corticobasal degeneration
CDK5. See Cyclin-dependent kinase-5
Charcot, Jean-Martin, 2, 4–5, 7–10, 12, 17
Chronic traumatic encephalopathy (CTE), overview, 43
Clarke, Robert Henry, 11–12
Clinical presentation, Parkinson's disease
autosomal dominant Parkinson's disease, 24–25
autosomal recessive Parkinson's disease, 25–26
exclusion criteria, 38
historical perspective, 1–7
motor symptoms
animal models
assessment, 253–254
MPTP monkey model, 233–234
bradykinesia, 18
overview, 186–188
postural and gait impairment, 19
rest tremor, 18–19
rigidity, 19
nonmotor symptoms, 19–20
Corticobasal degeneration (CBD), overview, 43
CTE. See Chronic traumatic encephalopathy

© 2012 by Cold Spring Harbor Laboratory Press
Cyclin-dependent kinase-5 (CDK5), dysfunction in Parkinson's disease, 351–352

D
Dardarin. See Leucine-rich repeat kinase-2
Default mode network (DMN), functional imaging, 171–173
Dementia with Lewy bodies (DLB) differential diagnosis, 23
parkinsonism etiology, 25
Diagnosis, Parkinson's disease clinical examination, 21
criteria, 22
differential diagnosis
dementia with Lewy bodies, 23
drug-induced parkinsonism, 22–23
essential tremor, 23
fragile X-tremor ataxia syndrome, 24
multiple system atrophy, 23, 37–39
progressive supranuclear palsy, 23–24, 37–39
vascular parkinsonism, 22
historical perspective, 1–7
imaging, 21–22
incorrect diagnosis features, 21
medical history, 20
DIP. See Drug-induced parkinsonism
DJ-1
apoptosis protection, 347–348
autophagy role, 322
autosomal recessive Parkinson's disease clinical features, 26, 57, 100
Drosophila studies of PINK1/Parkin pathway modulation, 285
evolution, 100–101
function, 104–106
genetic testing, 59
knockout mouse, 268–269
locus. See PARK7
mutation studies of parkinsonism development, 101–102
prospects for study, 106
DLB. See Dementia with Lewy bodies
DMN. See Default mode network
DNA polymerase-γ (POLG)
ageing studies in mutant mice, 218
mutation effects, 298
L-Dopa. See Levodopa
Dopamine
history of Parkinson's disease treatment, 10–11
striatum dopamine quantification in animal models of Parkinson's disease, 252
Drosophila
advantages as Parkinson's disease model system, 277–278

gene identification in Parkinson's disease, 276–277
 genetic and compound screening, 279
 knockdown studies, 279
 mutagenesis and loss-of-function studies, 278
 overexpression studies, 278–279
 prospects for Parkinson's disease studies, 285–286
 PTEN-induced putative kinase-1/Parkin pathway studies
 links with other PARK loci, 284–285
 mitochondrial fusion promotion and fusion inhibition, 281–282
 mitochondrial integrity, 279–281
 mitochondrial transport, 283–284
 mitophagy promotion, 282–283
 site-specific transgenesis, 279
Drug-induced parkinsonism (DIP) differential diagnosis, 22–23
drug types, 25
Dyskinesia. See specific dyskinesias

E
Endoplasmic reticulum (ER)
α-synuclein mutant effects, 76
apoptosis response, 351
protein quality control. See Autophagy; Ubiquitin proteasome system
Epidemiology, Parkinson's disease, 17–18
ER. See Endoplasmic reticulum
Essential tremor (ET), differential diagnosis, 23
ET. See Essential tremor

F
FDDNP, protein aggregation imaging, 175–176
FDOPA. See Positron emission tomography
fMRI. See Functional magnetic resonance imaging
Fragile X-tremor ataxia syndrome (FXTAS), differential diagnosis, 24
Functional magnetic resonance imaging (fMRI) default mode network, 171–173
principles, 165
FXTAS. See Fragile X-tremor ataxia syndrome

G
GAD. See Glutamic acid decarboxylase
Gaucher's disease, parkinsonism risks, 337–338
GBA. See β-Glucocerebrosidase
GCH-1. See GTP cyclohydrolase-1
GDNF. See Glial-derived neurotrophic factor
Gene therapy
enzyme replacement
 aromatic amino acid decarboxylase, 130–131
 glutamic acid decarboxylase, 132–133
 GTP cyclohydrolase-1, 130, 132
tyrosine hydroxylase, 130, 132

© 2012 by Cold Spring Harbor Laboratory Press
Index

Gene therapy (Continued)
glial-derived neurotrophic factor, 134–135
principles, 127–128
viral vectors
adeno-associated virus, 129
lentivirus, 128
Genetics, Parkinson’s disease
classification by loci, 50–51
genetic testing, 59
identification of new genes and risk factors, 53–54
linkage analysis, 53–54
loci. See specific loci
monogenetic Parkinson’s disease, 54–58
pedigrees, 50, 52–53
risk gene mutations in Parkinson’s disease, 58–59
Genomics, Parkinson’s disease
aberrant network activity identification, 116–118
bioinformatics
biomarker discovery, 118–120
overview, 115–116
historical perspective, 113–114
Mendelian versus complex disease, 112–113
therapeutic application, 120–122
Glial-derived neurotrophic factor (GDNF)
α-synuclein knockdown therapy, 135–136
direct injection studies, 133–134
functional overview, 133
gene therapy, 134–135
parkin, 136–137
prospects, 137–138
Globus pallidus
external segment, 150
internal segment, 149
Glutamic acid decarboxylase (GAD), gene therapy, 132–133
Gowers, William, 2, 7, 10
GTP cyclohydrolase-1 (GCH-1), gene therapy, 130, 132

H

Historical perspective, Parkinson’s disease
clinical descriptions, 1–3
differential diagnosis, 2, 4–7
genomics, 113–114
treatment, 7–13
Horsley, Victor, 12
HtrA2. See Omi/HtrA2
6-Hydroxydopamine (6-OHDA)
animal models of Parkinson’s disease, 244
brain physiology, 243–244
structure, 242
toxicity mechanisms, 246
Hypokinesia, motor control, 192–195

I

Inflammation
adaptive immune response. See Adaptive immune system
innate immune response. See Innate immune system
Innate immune system
cross-regulation with adaptive immunity in central nervous system, 382–384
inflammation in Parkinson’s disease
animal Parkinson’s disease model studies
lipopolysaccharide, 376
overview, 374
toxin models, 374–375
transgenic mouse studies, 375–376
epidemiological studies, 374
microglia
activation in Parkinson’s disease, 372–374
activators, 376
characteristics and functions in brain, 370–372
prospects for study, 377
systemic inflammation impact on innate immune cells, 372
T cell activation, 374
misfolded proteins in immune activation, 384–385
Isoquinoline, animal models of Parkinson’s disease, 249–250

J

Jellinger staging, multiple system atrophy, 42

K

Knockout mouse. See Mouse models

L

Lentivirus, gene therapy vectors, 128
Leucine-rich repeat kinase-2 (LRRK2)
autophagy role, 321–322
autosomal dominant Parkinson’s disease clinical features, 25, 55–56, 91–92
discovery, 89–90
functions
cytoskeleton, 93–94
membrane trafficking, 92–93
Parkinson’s disease protein pathway
overlap, 95

genetic testing, 59
locus. See PARK8
mutation
frequency, 90–91
functional effects, 94
sites, 92
protein–protein interactions, 92

© 2012 by Cold Spring Harbor Laboratory Press
structure, 92
transgenic mouse, 267
Levodopa, history of Parkinson’s disease
 treatment, 10–11
Levodopa-induced dyskinesia (LID)
 functional imaging, 168–170
MPTP monkey model, 235
Lewy body. See also α-Synuclein; Dementia with
 Lewy bodies
 characteristics, 39–40
detection in animal models of Parkinson’s
disease, 252–253
immunohistochemistry
 multiple system atrophy, 35–36
Parkinson’s disease, 35–36, 67
multiple system atrophy glial cytoplasmic
 inclusions, 40, 66
Lipopolysaccharide (LPS)
 animal models of Parkinson’s disease, 250
 innate inflammation studies in Parkinson’s
disease models, 376
LPS. See Lipopolysaccharide
LRRK2. See Leucine-rich repeat kinase-2
L-type calcium channel. See Calcium flux

M
Macrophage. See Microglia
Magnetic resonance imaging (MRI), Parkinson’s disease
diagnosis, 22
Methamphetamine, animal models of Parkinson’s
disease, 248–249
N-Methyl-D-aspartate receptor (NMDAR), neuronal
 phenotype of Parkinson’s disease,
 204–205
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
 (MPTP)
 mitochondria effects, 296
 monkey models of Parkinson’s disease
 anatomo-pathology, 232–233, 245
 behavioral assessment, 235
 cognitive impairment, 234
dyskinesia, 235
Lewy body lack, 233
 limitations, 235–236
 motor symptoms, 233–234
 sleep disturbances, 234–235
 species, 232
mouse models of Parkinson’s disease, 236–237
 species response in modeling Parkinson’s disease,
 231, 245
structure, 242
toxicity mechanisms, 245
ubiquitin proteasome system effects, 332
Microglia
 activation in Parkinson’s disease, 372–374, 387
 activators in Parkinson’s disease, 376
 characteristics and functions in brain, 370–372
Mitochondria
 aging hypothesis, 211–213, 305–306
 α-synuclein function, 75, 318–319
 calcium homeostasis role, 207–208, 294,
 301–303
 compartments, 293–294
 Drosophila studies of PINK1/Parkin pathway
 links with other PARK loci, 284–285
 mitochondrial fission promotion and fusion
 inhibition, 281–282
 mitochondrial integrity, 279–281
 mitochondrial transport, 283–284
 mitophagy promotion, 282–283
dynamics
 fusion/fission, 298–300
 motility and regional distribution, 300–301
 turnover, 301
 genetics, 297–298
 mitophagy. See Autophagy
 neuronal function, 209–210
 oxidative phosphorylation system
 complex I blockade consequences, 296
 overview, 295
 oxidative stress, 210–211
Parkinson’s disease dysfunction overview, 306–307,
 318–319
Parkin targets, 320
 programmed cell death
 fragmentation, 352–353
 pathways, 303–305, 349
 Monkey models. See 1-Methyl-4-phenyl-1,2,3,6-
tetrahydropyridine
Motor control
 akinesia, 196–198
 animal model assessment, 253–254
 bradykinesia, 192–196
 hypokinesia, 192–195
 levels of description, 189–190
 motor symptom to motor control, 190–191
 overview, 188
 rigidity, 190–192
Mouse models, Parkinson’s disease
 autosomal dominant Parkinson’s disease, 263
 autosomal recessive Parkinson’s disease, 264
 characterization, 266
 knockout mouse models
 DJ-1, 268–269
 overview, 264–265
 parkin, 267–268
 PTEN-induced putative kinase-1, 268
 MPTP, 236–237
 overview, 262
 prospects, 269–271
 transgenic mouse models
Mouse models, Parkinson’s disease (Continued)
α-synuclein, 266–267
constructs, 262
innate inflammation studies, 375–376
leucine-rich repeat kinase-2, 267
test-off conditional models, 262, 264
virus-induced models, 265–266
MPTP. See 1-Methyl-4-phenyl-1,2,3,6-
tetrahydropyridine
MRI. See Magnetic resonance imaging
MSA. See Multiple system atrophy
Multiple system atrophy (MSA)
brain morphology, 34, 39
clinical features, 38
differential diagnosis, 23, 37–39
glial cytoplasmic inclusions, 40
Jellinger staging, 42
Lewy body immunohistochemistry, 35–36
pathology comparison with Parkinson’s disease and
progressive supranuclear palsy, 40–41
substantia nigra degeneration, 34–35

N
Necroptosis, dysfunction in Parkinson’s disease, 356
Neuronal phenotype, Parkinson’s disease
calcium channel, L-type targeting, 221–223
metabolic burden
spiking, 205–208
synaptic transmission, 209
mitochondria
aging hypothesis, 211–213
oxidative stress, 210–211
overview, 204–205
pacemaking and ionic homeostasis challenge,
208–209
reconciliation with other pathogenesis models,
220–221
vulnerable neurons
dopaminergic neurons, 213–220
non-dopaminergic neurons, 220
Niemann-Pick disease, parkinsonism risks, 337–338
NMDAR. See N-Methyl-D-aspartate receptor
6-OHDA. See 6-Hydroxydopamine

O
Omi/HtrA2
Drosophila studies of PINK1/Parkin pathway
modulation, 284–285
function, 284
Oxidative stress
α-synuclein role, 75–76
macroautophagy effects, 335–336
mitochondria
MPTP effects, 296
role, 210–211

P
p53, expression in Parkinson’s disease, 352
p62, parkin-dependent mitophagy, 320
Paranatos, dysfunction in Parkinson’s
disease, 355–356
Paraquat
animal models of Parkinson’s disease, 246–247
structure, 242
PARK, autosomal dominant Parkinson’s disease clinical
features, 24
PARK1. See also α-Synuclein
autosomal-dominant Parkinson’s disease clinical
features, 24
PARK2. See also Parkin
autosomal recessive Parkinson’s disease clinical
features, 25, 56–57
mutation and Parkinson’s disease
susceptibility, 53
PARK4. See also α-Synuclein
autosomal-dominant Parkinson’s disease clinical
features, 24
PARK5. See also Ubiquitin carboxy-terminal
hydrolase-1
autosomal-dominant Parkinson’s disease clinical
features, 24–25
PARK6. See also PTEN-induced putative kinase-1
autosomal recessive Parkinson’s disease clinical
features, 26, 57
mutation and Parkinson’s disease
susceptibility, 53
PARK7. See also DJ-1
autosomal recessive Parkinson’s disease clinical
features, 26, 57
PARK8. See also Leucine-rich repeat kinase-2
autosomal dominant Parkinson’s disease clinical
features, 25, 55–56, 91–92
PARK9. See ATP13A2
PARK13. See Omi/HtrA2
Parkin
apoptosis protection, 348
autosomal recessive Parkinson’s disease clinical
features, 25, 56–57, 100
Drosophila studies of PINK1/Parkin pathway
links with other PARK loci, 284–285
mitochondrial fission promotion and fusion
inhibition, 281–282
mitochondrial integrity, 279–281
mitochondrial transport, 283–284
mitophagy promotion, 282–283
evolution, 101
function, 102–104
gene therapy, 136–137
genetic testing, 59
knockout mouse, 267–268
locus. See PARK2
mitochondrial targets, 320
mitophagy role, 320, 354
mutation studies of parkinsonism development, 101–102
prospects for study, 106
ubiquitin proteasome system effects of mutation, 331–332
Parkinson, James, 1–3, 17
Parkinson-dementia complex (PDC), overview, 43–44
Parkinson's disease-related cognitive pattern (PDCP), functional imaging, 171–172
Parkinson's disease-related pattern (PDRP), positron emission tomography, 166–168
Parkinson's disease tremor-related pattern (PDTP), positron emission tomography, 168
PCD. See Programmed cell death
PDC. See Parkinson-dementia complex
PDCP. See Parkinson's disease-related cognitive pattern
PDRP. See Parkinson's disease-related pattern
PDTP. See Parkinson's disease tremor-related pattern
PET. See Positron emission tomography
PIB. See Pittsburgh Compound B
PINK1. See PTEN-induced putative kinase-1
Pittsburgh Compound B (PIB), protein aggregation imaging, 175–176
Placebo therapy, historical perspective, 12–13
POLG. See DNA polymerase-γ
Positron emission tomography (PET)
default mode network, 171
functional imaging
dopaminergic dysfunction and motor symptoms, 165–166
metabolic networks, 166–168
levodopa-induced dyskinesia, 169–170
neurotransmitter imaging, 173–175
Parkinson's disease diagnosis, 21
principles, 164–165
protein aggregation imaging, 175–176
resting metabolism studies, 171–172
Programmed cell death (PCD)
apoptosis
animal models of Parkinson's disease, 347–348
assays, 346–347
Bcl-2 proteins, 349–350
caspase activation, 348, 350
cyclin-dependent kinase-5 dysfunction, 351–352
endoplasmic reticulum response, 351
p53 expression, 352
pathways, 348–349
autophagy
defects in Parkinson's disease, 353–354
mitophagy, 354–355
overview, 353–354
mitochondria
fragmentation, 352–353
pathways, 303–305, 349
overview, 345–346
Progressive supranuclear palsy (PSP)
brain morphology, 34, 39
clinical features, 38–39
differential diagnosis, 23–24, 37–39
pathology comparison with Parkinson's disease and multiple system atrophy, 40–41
staging, 42–43
substantia nigra degeneration, 34–35
tau immunohistochemistry, 35, 37
pathology, 40
Proteasome. See Ubiquitin proteasome system
Protein quality control. See Autophagy; Ubiquitin proteasome system
PSP. See Progressive supranuclear palsy
PTEN-induced putative kinase-1 (PINK1)
apoptosis protection, 348
autophagy function
isoforms, 321
overview, 320–21, 354
protective function, 321
autosomal recessive Parkinson's disease clinical features, 26, 57, 100
Drosophila studies of PINK1/Parkin pathway
links with other PARK loci, 284–285
mitochondrial fission promotion and fusion inhibition, 281–282
mitochondrial integrity, 279–281
mitochondrial transport, 283–284
mitophagy promotion, 282–283
evolution, 101
function, 102–104
genetic testing, 59
knockout mouse, 268
locus. See PARK6
mutation studies of parkinsonism development, 101–102
prospects for study, 106
R
Reserpine, animal models of Parkinson's disease, 248
Rest tremor, Parkinson's disease, 18–19
Rigidity
motor control, 190–192
Parkinson's disease, 19
Rotenone, animal models of Parkinson's disease, 247
S
Single-photon emission computed tomography (SPECT)
Parkinson's disease diagnosis, 21
principles, 164–165
protein aggregation imaging, 175–176
Index

Sleep disorders, Parkinson’s disease
 MPTP monkey model, 234–235
 overview, 20
SNc. See Substantia nigra pars compacta
SNCA. See α-Synuclein
SPECT. See Single-photon emission computed tomography
STN. See Subthalamic nucleus
Striatum
 basal ganglia projections
 afferents, 147–149
corticostriatal connections, 155
efferents, 149
 neurons and interneurons, 144–145
output nuclei
globus pallidus internal segment, 149
 substantia nigra pars reticulata, 149–150
compartments, 146–147
dopamine quantification in animal models of Parkinson’s disease, 252
dopaminergic terminal quantification in animal models of Parkinson’s disease, 252
Substantia nigra, degeneration in parkinsonian disorders, 34–35
Substantia nigra pars compacta (SNc)
dopaminergic neuron quantification in animal models of Parkinson’s disease, 251–252
neuron vulnerability in Parkinson’s disease, 214–220
Substantia nigra pars reticulata, 149–152
Subthalamic nucleus (STN)
corticosthalamic connections, 155–156
 overview, 150–151
Surgical therapy, historical perspective, 11–12

T
 Tau, progressive supranuclear palsy
 immunohistochemistry, 35, 37
 pathology, 40
T cell
 activation in Parkinson’s disease, 374, 387–388
central nervous system, 382
cross-regulation with innate immunity in central nervous system, 383–384
 regulatory T cell therapeutic targeting, 388–391
TDP-43-related parkinsonism, overview, 44
TH. See Tyrosine hydroxylase
Tyrosine hydroxylase (TH), gene therapy, 130, 132

U
 Ubiquitin carboxy-terminal hydrolase-1 (UCHL1)
 locus. See PARK5
 Parkinson’s disease susceptibility gene, 58
Ubiquitin proteasome system (UPS)
 ATP13A2 mutation and dysfunction, 337–338
 MPTP effects, 332
 overview, 329–331
 parkin mutation effects, 331–332
 protein misfolding versus clearance in Parkinson’s disease, 328–329
 α-synuclein mutation effects, 331–332
UCHL1. See Ubiquitin carboxy-terminal hydrolase-1

V
 Vascular parkinsonism, differential diagnosis, 22
 Ventral tegmental area (VTA), dopaminergic neuron susceptibility in Parkinson’s disease, 214, 216
Vibratory therapy, historical perspective, 9
VTA. See Ventral tegmental area