TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Manual Title</th>
<th>Code</th>
<th>Manual Title</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies, Second Edition</td>
<td>C1</td>
<td>Mouse Hematology</td>
<td>C22</td>
</tr>
<tr>
<td>Manipulating the Mouse Embryo, Fourth Edition</td>
<td>C2</td>
<td>Genetics of Complex Human Diseases</td>
<td>C23</td>
</tr>
<tr>
<td>Calcium Techniques</td>
<td>C4</td>
<td>Transcriptional Regulation in Eukaryotes, Second Edition</td>
<td>C24</td>
</tr>
<tr>
<td>Purifying and Culturing Neural Cells</td>
<td>C6</td>
<td>Proteomics Course Manual</td>
<td>C26</td>
</tr>
<tr>
<td>Mouse Models of Cancer</td>
<td>C7</td>
<td>Single-Molecule Techniques</td>
<td>C27</td>
</tr>
<tr>
<td>Molecular Cloning, Fourth Edition</td>
<td>C9</td>
<td>Genetic Variation</td>
<td>C29</td>
</tr>
<tr>
<td>RNA: A Laboratory Manual</td>
<td>C10</td>
<td>Gene Transfer</td>
<td>C31</td>
</tr>
<tr>
<td>Imaging: A Laboratory Manual</td>
<td>C11</td>
<td>Basic Methods in Microscopy</td>
<td>C34</td>
</tr>
<tr>
<td>Imaging in Developmental Biology</td>
<td>C13</td>
<td>Methods in Yeast Genetics, 2005</td>
<td>C35</td>
</tr>
<tr>
<td>Imaging in Neuroscience</td>
<td>C15</td>
<td>Drosophila Protocols</td>
<td>C36</td>
</tr>
<tr>
<td>Live Cell Imaging, Second Edition</td>
<td>C18</td>
<td>Index (Subject Areas)</td>
<td>C38</td>
</tr>
<tr>
<td>Drosophila Neurobiology</td>
<td>C20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Antibodies
A Laboratory Manual, Second Edition

Edited by Edward A. Greenfield, Dana-Farber Cancer Institute

The second edition of the now-classic lab manual Antibodies, by Harlow and Lane, has been revised, extended, and updated by Edward Greenfield of the Dana-Farber Cancer Center, with contributions from other leaders in the field. This manual continues to be an essential resource for molecular biology, immunology, and cell culture labs on all matters relating to antibodies. The chapters on hybridomas and monoclonal antibodies have been recast with extensive new information and there are additional chapters on characterizing antibodies, antibody engineering, and flow cytometry. As in the original book, the emphasis in this second edition is on providing clear and authoritative protocols with sufficient background information and troubleshooting advice for the novice as well as the experienced investigator.

2013, 847 pp., illus. (32 4C, 103 B&W), appendices, index
Hardcover $260 £160
Paperback $175 £108

CONTENTS
Preface
1 Antibody Production by the Immune System
 Stefanie Sarantopoulos
2 The Antibody Molecule
 Stefanie Sarantopoulos
3 Antibody-Antigen Interactions
 Stefanie Sarantopoulos
4 Antibody Responses
 Stefanie Sarantopoulos
5 Selecting the Antigen
 Edward A. Greenfield, James DeCaprio, and Mohan Brahmanandam
6 Immunizing Animals
 Edward A. Greenfield
7 Generating Monoclonal Antibodies
 Edward A. Greenfield
8 Growing Hybridomas
 Edward A. Greenfield
9 Characterizing Antibodies
 Frances Weis-Garcia and Robert H. Carnahan
10 Antibody Purification and Storage
 Jordan B. Fishman and Eric A. Berg
11 Engineering Antibodies
 James Dasch and Amy Dasch
12 Labeling Antibodies
 Eric A. Berg and Jordan B. Fishman
13 Immunoblotting
 Larisa Litovchick
14 Immunoprecipitation
 James DeCaprio and Thomas O. Kohl
15 Immunoassays
 Thomas O. Kohl and Carl A. Ascoli
16 Cell Staining
 Scott J. Rodig
17 Antibody Screening Using High Throughput Flow Cytometry
 Thomas D.I. Duensing and Susan R. Watson
Appendix I: Electrophoresis
Appendix II: Protein Techniques
Appendix III: General Information
Appendix IV: Bacterial Expression
Appendix V: Cautions
Index
Manipulating the Mouse Embryo
A Laboratory Manual, Fourth Edition

By Richard Behringer, University of Texas, M.D. Anderson Cancer Centre, Marina Gertsenstein, Toronto Centre for Phenogenomics, Transgenic Core and Specialty Resources, Kristina Nagy, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, and Andras Nagy, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto

The fourth edition of the “Mouse Manual”—Manipulating the Mouse Embryo—appears 28 years after the first edition and once again is the definitive reference source on mouse development, transgenesis techniques, and molecular biology. Authors Richard Behringer, Marina Gertsenstein, Kristina Nagy, and Andras Nagy—pre-eminent leaders in their fields—have reorganized and updated this edition to include new information and protocols on:

• assisted reproduction techniques for sperm and embryo cryopreservation
• generation of induced pluripotent stem cells
• isolation, generation, and transplantation of spermatogonial stem cell lines
• in utero electroporation of gene constructs into post-implantation embryos
• vibratome sectioning of live and fixed tissues for imaging thick tissue sections
• whole-mount fluorescent staining methods for three-dimensional visualization.

Techniques regarding recombinant DNA technology and mouse embryonic development from the previous editions have been updated and recast, as has the wealth of information on mouse laboratory strains, mouse housing and breeding, surgical procedures, assisted reproduction, handling of embryos, and micromanipulation setups. The first edition of Manipulating the Mouse Embryo appeared in 1986 as an outgrowth of Cold Spring Harbor Laboratory courses on the molecular embryology of the mouse held in the early 1980s, and authors of the first two editions included Brigid Hogan, Rosa Beddington, Frank Costantini, and Liz Lacy. Mouse embryo manipulation techniques have developed exponentially since the first edition, but then, as now, Manipulating the Mouse Embryo remains the essential practical and theoretical guide for anyone working with mice—students, lab technicians, and investigators.

Due November 2013, 850 pp. (approx.), illus., index
Hardcover $240 £150
Paperback $165 £104

ISBN 978-1-936113-00-2

CONTENTS (preliminary)
Chapter 1 Genetics and Embryology of the Mouse: Past, Present, and Future
Chapter 2 Summary of Mouse Development
Chapter 3 A Mouse Colony for the Production of Transgenic and Chimeric Animals
Chapter 4 Recovery and In Vitro Culture of Preimplantation Embryos
Chapter 5 Isolation, Culture, and Manipulation of Postimplantation Embryos
Chapter 6 Surgical Procedures
Chapter 7 Production of Transgenic Mice by Pronuclear Microinjection
Chapter 8 Embryo-derived Stem Cell Lines
Chapter 9 Germ Line–Competent Stem Cells Derived from Adult Mice
Chapter 10 Vector Designs for Pluripotent Stem Cell-based Transgenesis and Genome Alterations
Chapter 11 Introduction of Foreign DNA into Embryonic Stem Cells
Chapter 12 Production of Chimeras

continued

www.cshlpublish.org
1-855-452-6793
Manipulating the Mouse Embryo
A Laboratory Manual, Fourth Edition

Chapter 13 Genotyping
Chapter 14 Parthenogenesis, Pronuclear Transfer, and Mouse Cloning
Chapter 15 Assisted Reproduction: Ovary Transplantation, In Vitro Fertilization, Artificial Insemination, and Intracytoplasmic Sperm Injection
Chapter 16 Cryopreservation, Rederivation, and Transport of Mouse Strains

Chapter 17 Techniques for Visualizing Gene Products, Cells, Tissues, and Organ Systems
Chapter 18 Setting Up a Micromanipulation Lab
Appendices:
Buffers & Solutions
Web Resources
Cautions
Calcium Techniques
A Laboratory Manual

Edited by Jan B. Parys, University of Leuven, Martin Bootman, The Babraham Institute, David I. Yule, University of Rochester, and Geert Bultynck, University of Leuven

Life begins with a surge of calcium ions (Ca\(^{2+}\)) at fertilization, and thereafter, Ca\(^{2+}\) signaling influences nearly every aspect of mammalian development and physiology, from gene expression and cell proliferation to muscle contraction and nerve impulses. To create spatiotemporally distinct Ca\(^{2+}\) signals, cells use a variety of mechanisms to recognize, transport, and buffer Ca\(^{2+}\). Thus, a diverse range of reliable experimental techniques is necessary to study the movement of Ca\(^{2+}\) and the various effectors involved.

This laboratory manual provides step-by-step protocols for studying many facets of Ca\(^{2+}\) signaling, as well as background information on the principles and applications of the techniques. Contributors discuss how to use fluorescent, luminescent, and genetically encoded Ca\(^{2+}\) probes in conjunction with state-of-the-art imaging modalities to characterize Ca\(^{2+}\) signals. Electrophysiological measurements of Ca\(^{2+}\) channel activity are described, as are radioactive Ca\(^{2+}\) flux assays and methods to investigate signaling mediated by specific Ca\(^{2+}\)-mobilizing messengers (IP3, cADPR, and NAADP). Techniques to modulate and suppress intra- and intercellular signals are also provided. Each protocol is complete with a list of required materials, detailed recipes for media and reagents, and troubleshooting advice.

Specific chapters are devoted to Ca\(^{2+}\) signaling techniques in non-mammalian systems, such as plants, yeast, zebrafish, and Xenopus. Methods for assessing Ca\(^{2+}\)-binding kinetics and strategies for developing mathematical models of Ca\(^{2+}\) signaling are also included. Thus, this manual is a comprehensive laboratory resource for biochemists, cell and developmental biologists, and physiologists who are using or looking to expand their repertoire of Ca\(^{2+}\) techniques.

Due November 2013, 500 pp. (approx.), illus., index
Hardcover $150 £86
Paperback $95 £61
ISBN 978-1-621820-78-9

CONTENTS
Preface
SECTION 1. FLUORESCENCE
1. Fluorescence Microscopy
 Michael J. Sanderson, Ian Smith, Ian Parker, and Martin D. Bootman
2. Ca\(^{2+}\)-Sensitive Fluorescent Dyes and Intracellular Ca\(^{2+}\) Imaging
 Martin D. Bootman, Katja Rietdorf, Tony Collins, Simon Walker, and Michael Sanderson
3. Properties and Use of Genetically Encoded FRET Sensors for Cytosolic and Organellar Ca\(^{2+}\) Measurements
 J. Genevieve Park and Amy E. Palmer

4. Photolysis of Caged Compounds: Studying Ca\(^{2+}\) Signaling and Activation of Ca\(^{2+}\)-Dependent Ion Channels
 Janos Almassy and David I. Yule
5. Electroporation Loading and Flash Photolysis to Investigate Intra- and Intercellular Ca\(^{2+}\) Signaling
 Elke Decrock, Marijke De Bock, Nan Wang, Melissa Bol, Ashish K. Gadicherla, and Luc Leybaert
6. Investigating Calcium Signaling by Confocal and Multiphoton Microscopy
 Lars Kaestner and Peter Lipp
7. Combining Calcium Imaging with Other Optical Techniques
 Marco Canepari, Dejan Zecevic, Kaspar E. Vogt, David Ogden, and Michel De Waard
8. High-Throughput Analyses of IP3 Receptor Behavior
 Colin W. Taylor, Stephen C. Tovey, and Ana M. Rossi

SECTION 2. LUMINESCENCE
9. The Use of Aequorin and Its Variants for Ca\(^{2+}\) Measurements
 Veronica Granatiero, Maria Patron, Anna Tasatto, Giulia Merli, and Rosario Rizzuto
10. Introduction of Aequorin into Zebrafish Embryos for Recording Ca\(^{2+}\) Signaling during the First 48 h of Development
 Sarah E. Webb, Ching Man Chan, and Andrew L. Miller

continued
Calcium Techniques
A Laboratory Manual

SECTION 3. RADIOACTIVE
TECHNIQUES
11. Measurement of Intracellular Ca^{2+}
Release in Intact and Permeabilized Cells
Using 45Ca^{2+}
Ludwig Missiaen, Tomas Luyten,
Geert Bullynck, Jan B. Parys, and
Humbert De Smedt
12. Measuring Ca^{2+} Pump Activity in
Overexpression Systems and Cardiac
Muscle Preparations
Tine Holemans, Ilse Vandecaetsbeek,
Frank Wuytack, and Peter Vangheluwe

SECTION 4. ELECTROPHYSIOLOGY
13. Patch-Clamp Recording of Voltage-
Sensitive Ca^{2+} Channels
María A. Gandini, Alejandro Sandoval,
and Ricardo Félix
14. Patch-Clamp Measurement of ICRAC
and ORAI Channel Activity
Dalia Alansary, Tatiana Kilch, Christian
Hölzmann, Christine Peinelt, Markus Hoth,
and Annette Lis
15. Patch-Clamp Electrophysiology of
Intracellular Ca^{2+} Channels
Don-On Daniel Mak, Horia Vais,
King-Ho Cheung, and J. Kevin Fozkett
16. Bilayer Measurement of Endoplasmic
Reticulum Ca^{2+} Channels
Ilya Bzeprosvanny
17. Measurement of Mitochondrial Ca^{2+}
Transport Mediated by Three Transport
Proteins: VDAC1, the Na^{+}/Ca^{2+}
Exchanger, and the Ca^{2+} Uniporter
Danya Ben-Hail, Raz Palty, and
Varda Shoshan-Barmatz
18. Calcium-Sensitive Mini- and
Microelectrodes
Roger C. Thomas and Donald M. Bers

SECTION 5. SPECIAL TISSUES
19. The Xenopus Oocyte: A Single-Cell
Model for Studying Ca^{2+} Signaling
Yaping Lin-Moshier and
Jonathan S. Marchant
20. Imaging and Manipulating Calcium
Transients in Developing Xenopus Spinal
Neurons
Nicholas C. Spitzer, Laura N. Borodinsky,
and Cory M. Root
21. A Systematic Approach for Assessing
Ca^{2+} Handling in Cardiac Myocytes
Karim R. Sidipo, Niall Macquaid, and
Virginie Bito
22. Monitoring Ca^{2+} Signaling in Yeast
Renata Tisi, Enzo Martegani, and
Rogelio L. Brandão
23. Ca^{2+} Imaging in Plants Using Genetically
Encoded Yellow Cameleon Ca^{2+}
Indicators
Smritisanjita Behera, Melanie Krebs,
Giovanna Loro, Karin Schumacher,
Alex Costa, and Jörg Kudla
24. Cyclic ADP-Ribose: Endogenous
Content, Enzymology, and Ca^{2+} Release
Andreas H. Guse, Tanja Kirchberger, and
Santina Bruzzone
25. Methods in Nicotinic Acid Adenine
Dinucleotide Phosphate Research
Antony Galione, Kai-Ting Chuang,
Tim M. Funnell, Lianne C. Davis,
Anthony J. Morgan, Margarida Ruas,
John Parrington, and Grant C. Churchill

SECTION 6. NAD(P)-DERIVED
MESSENGERS
26. Measuring Ca^{2+}:Binding Kinetics of
Proteins
Guido C. Faas and Istvan Mody
27. Translating Intracellular Calcium
Signaling into Models
Rüdiger Thul

APPENDIX 1. General Safety and Hazardous
Material Information
Index
Cell culture systems for specific neural cell types are essential for studies of their development and function. This laboratory manual provides step-by-step protocols for isolating specific cell populations from rodent tissues and culturing them under conditions that closely resemble those in vivo. The contributors describe in detail how to dissect the brain, spinal cord, and other tissues; how to separate cells using mechanical and enzymatic tissue-dissociation strategies; the use of immunopanning and fluorescence-activated cell sorting (FACS) to enrich the target cell population; and the culture conditions that optimize cell viability and growth. Retinal ganglion cells, motor neurons, dorsal root ganglion cells, astrocytes, oligodendrocytes, and Schwann cells are covered, as are vascular cells such as pericytes and endothelial cells. Myelinating co-cultures of neurons and oligodendrocytes are also described.

The manual includes detailed recipes for media and reagents, tips for avoiding common pitfalls, and advice for designing new immunopanning protocols using tissues from other sources. Many of the protocols are accompanied by freely accessible online movies that demonstrate critical steps of the procedures. This is an essential laboratory companion for all neurobiologists, from the graduate student level upwards.

Due November 2013, 205 pp., illus., index
Hardcover $135 £87
Paperback $89 £57
ISBN 978-1-621820-11-6

CONTENTS (preliminary)
I. Introduction
II. CNS Neurons
Chapter 1: Purification and Culture of Retinal Ganglion Cells
 Alissa Winzeler and Jack T. Wang
Chapter 2: Purification and Culture of Corticospinal Motor Neurons
 Wim Mandmakers
Chapter 3: Purification and Culture of Spinal Motor Neurons
 David J. Graber and Brent T. Harris
Chapter 4: Purification and Culture of Dorsal Root Ganglion Neurons
 J. Bradley Zuchero
III. Astrocytes and Vascular Cells
Chapter 5: Purification and Culture of Astrocytes
 Lynette C. Foo
Chapter 6: Purification and Culture of CNS Pericytes
 Lu Zhou, Fabien Sohet, and Richard Daneman
Chapter 7: Purification and Culture of CNS Endothelial Cells
 Lu Zhou, Fabien Sohet, and Richard Daneman

IV. Myelinating Glia
Chapter 8: Purification and Culture of Oligodendrocyte Lineage Cells
 Jason C. Dugas and Ben Emery
Chapter 9: Myelinating Cocultures of Purified Oligodendrocyte Lineage Cells and Retinal Ganglion Cells
 Trent A. Watkins and Anja R. Scholze
Chapter 10: Purification of Schwann Cells
 Amanda Brosius Lutz
Chapter 11: Designing and Troubleshooting Immunopanning Protocols for Purifying Neural Cells
 Ben A. Barres
Index
Mouse Models of Cancer
A Laboratory Manual

Edited by Cory Abate-Shen, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, Katerina Politi, Yale Cancer Center, Yale University School of Medicine, Lewis Chodosh, Perelman School of Medicine, University of Pennsylvania, and Kenneth P. Olive, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center

The laboratory mouse is an important model for addressing questions in cancer biology. In recent years, the questions have become more refined, and mouse models are increasingly being used to develop and test cancer therapeutics. Thus, the need for more sophisticated and clinically relevant mouse models has grown, as has the need for innovative tools to analyze and validate them.

This laboratory manual provides cutting-edge methods for generating and characterizing mouse models that accurately recapitulate many features of human cancer. The contributors describe strategies for producing genetic models, including transgenic germline models, gene knockouts and knockins, and conditional and inducible systems, as well as models derived using transposon-based insertional mutagenesis, RNA interference, viral-mediated gene delivery, and chemical carcinogens. Tissue recombination, organ reconstitution, and transplantation methods to develop chimeric, allograft, and xenograft models are covered. Approaches to characterize tumor development, progression, and metastasis in these models using state-of-the-art imaging, histopathological, surgical, and other techniques are also included.

Other chapters cover the use of mouse models to test and optimize drugs in pre-, co-, and post-clinical trials. An appendix specifically addresses the use of mouse cancer models in translational studies and the integration of mouse and human clinical investigations. This manual is therefore an indispensable laboratory resource for all researchers, from the graduate level upwards, who study cancer and its treatment.

Due December 2013, 500 pp. (approx.), illus., index

Hardcover $240 £150
Paperback $165 £104

ISBN 978-1-621820-04-8
ISBN 978-1-621820-03-1

CONTENTS (preliminary)
Preface
INTRODUCTION: Of Model Pets and Cancer Models
Andrea Lunardi, Caterina Nardella, Sean Clohesy, and Pier Paolo Pandolfi

PART 1: Origins and History of Mouse Models of Cancer
1. Transgenic Mouse Models – A Seminal Breakthrough in Oncogene Research
Harvey H. Smith and William J. Muller
2. Analyses of Tumor Suppressor Genes in Germ-line Mouse Models of Cancer
Jingqiang Wang and Cory Abate-Shen
3. Conditional Knock-out Mouse Models of Cancer
Chu-Xia Deng
4. Animal Models of Chemical Carcinogenesis: Driving Breakthroughs in Cancer Research for 100 Years
Christopher J. Kemp
5. The Effects of Genetic Background of Mouse Models of Cancer: Friend or Foe?
Karlyne M. Reilly

PART 2: Recent Approaches to Modeling Cancer in Mice
6. Genetically Engineered Knock-in and Conditional Knock-in Mouse Models of Cancer
Amy Rappaport and Leisa Johnson
7. Strategies to Achieve Conditional Gene Mutation in Mice
Jessica J. Gierut, Tyler E. Jacks, and Kevin M. Haigis
8. Tetracycline-Regulated Mouse Models of Cancer
Lewis Chodosh

continued
Mouse Models of Cancer
A Laboratory Manual

9. The Switchable ER-Fusion System in Mouse Models
Jonathan Whitfield, Trevor Littlewood, Gerard Evan, and Laura Soucek

10. Using the RCAS-TVA System to Model Human Cancer in Mice
Brian Lewis

11. Transposon Insertional Mutagenesis Models of Cancer
Karen M. Mann, Nancy A. Jenkins, Neal G. Copeland, and Michael B. Mann

12. Accelerating Cancer Modeling with RNAi and Nongermline Genetically Engineered Mouse Models
Scott Lowe and Guilah Livshits

13. Mosaic Models in the Murine Hematopoietic System
Michael Hemann

14. Tissue Recombination Models for the Study of Epithelial Cancer
Yang Zong, Andrew S. Goldstein, and Owen N. Witte

15. Immunodeficient Mouse Models for Cancer Research
Leonard D. Shultz, Neal Goodwin, Fumihiko Ishikawa, and Dale L. Greiner

PART 3: Analyzing Mouse Cancer Phenotypes

16. Analysis of Mouse Model Pathology: A Primer for Studying GEM Pathobiology
Robert D. Cardiff, Clarame H. Miller, and Robert J. Munn

17. Reporter Alleles for Imaging
Scott K. Lyons, P. Stephen Patrick, and Kevin M. Brindle

18. Noninvasive Imaging of Tumor Burden and Molecular Pathways in Mouse Models of Cancer
Yuchuan Wang, Jen-Chieh Tseng, Yanping Sun, and Andrew L. Kung

19. Methods to Study Metastasis in Genetically Modified Mice
Farhia Kabeer, Levi J. Beverly, Guillaume Darrasse-Jèze, and Katrina Podsypanina

20. Methods for Analyses of the Immune System
Lauren J. Bayne and Robert H. Vonderheide

21. Analyses of Tumor Cells in Culture
Andrew D. Rhim, Martin Jechlinger, and Anil K. Rustgi

22. Translational Therapeutics in Genetically Modified Mouse Models of Cancer
Ken Olive and Katerina Politi

Appendices
Index
Molecular Cloning: A Laboratory Manual
Fourth Edition

By Michael R. Green, Howard Hughes Medical Institute, University of Massachusetts Medical School and Joseph Sambrook, Peter MacCallum Cancer Institute, Melbourne, Australia

Molecular Cloning: A Laboratory Manual has always been the one indispensable molecular biology laboratory manual for protocols and techniques. The fourth edition of this classic manual preserves the detail and clarity of previous editions as well as the theoretical and historical underpinnings of the techniques presented. Ten original core chapters reflect developments and innovation in standard techniques and introduce new cutting-edge protocols. Twelve entirely new chapters are devoted to the most exciting current research strategies, including epigenetic analysis, RNA interference, genome sequencing, and bioinformatics. This manual is essential for both the inexperienced and the advanced user.

2012, 2,028 pp., illus. (74 4C, 157 2C, and 50 B&W), appendices, index
Cloth (three-volume set) $395 £259
Paperback (three-volume set) $365 £230

CONTENTS

VOLUME 1
Part 1 Essentials
1. Isolation and Quantification of DNA
2. Analysis of DNA
3. Cloning and Transformation with Plasmid Vectors
4. Gateway Recombinational Cloning
5. Working with Bacterial Artificial Chromosomes and Other High-Capacity Vectors
6. Extraction, Purification, and Analysis of RNA from Eukaryotic Cells
7. Polymerase Chain Reaction
8. Bioinformatics

VOLUME 2
Part 2 Analysis and Manipulation of DNA and RNA
9. Quantification of DNA and RNA by Real-Time Polymerase Chain Reaction
10. Nucleic Acid Platform Technologies
11. DNA Sequencing
12. Analysis of DNA Methylation in Mammalian Cells
13. Preparation of Labeled DNA, RNA, and Oligonucleotide Probes
14. Methods for In Vitro Mutagenesis

Part 3 Introducing Genes into Cells
15. Introducing Genes into Cultured Mammalian Cells
16. Introducing Genes into Mammalian Cells: Viral Vectors

VOLUME 3
Part 4 Gene Expression
17. Analysis of Gene Regulation Using Reporter Systems
18. RNA Interference and Small RNA Analysis
19. Expressing Cloned Genes for Protein Production, Purification, and Analysis

Part 5 Interaction Analysis
21. Mapping of In Vivo RNA-Binding Sites by UV-Cross-Linking Immunoprecipitation (CLIP)
22. Gateway-Compatible Yeast One-Hybrid and Two-Hybrid Assays

Appendices
1. Reagents and Buffers
2. Commonly Used Techniques
3. Detection Systems
4. General Safety and Hazardous Material

Index

www.cshlppress.org
1-855-452-6793

BEST-SELLING MANUALS
RNA molecules participate in and regulate a vast array of cellular processes, and the scientific community is now entering a new era in which some aspect of RNA biology—as a tool, a therapeutic, a diagnostic, or part of a fundamental process—is becoming increasingly important. But initiating RNA research can be intimidating, and without a thorough understanding of the challenges and complexities inherent in handling this fragile nucleic acid, forays into the RNA world can be quite frustrating. *RNA: A Laboratory Manual* provides a broad range of up-to-date techniques so that any investigator can confidently handle RNA and carry out meaningful experiments, from the most basic to the most sophisticated. Originating in four of the field’s most prominent laboratories and written with novices as well as more advanced researchers in mind, this manual provides the necessary background and strategies for approaching any RNA investigation in addition to detailed step-by-step protocols and extensive tips and troubleshooting information. *RNA: A Laboratory Manual* will enable any researcher to approach a wide variety of RNA-related problems with confidence and a high expectation of success.

2011, 586 pp., illus., appendices, index
Hardcover $246 £155
Paperback $169 £107

CONTENTS
Preface
Acknowledgments
CHAPTER 1: THE FUNDAMENTALS
CHAPTER 2: PURIFICATION OF RNA FROM NATURAL SOURCES
CHAPTER 3: DETECTION AND CHARACTERIZATION OF SPECIFIC RNAs
CHAPTER 4: SYNTHESIS, PURIFICATION LABELING, AND SUBSTITUTION OF TRANSCRIPTS SYNTHESIZED IN VITRO
CHAPTER 5: DETECTING AND DEFINING RNA–PROTEIN AND RNA–RNA INTERACTIONS
CHAPTER 6: ANALYSIS OF RNA-PROCESSING REACTIONS USING CELL-FREE SYSTEMS
CHAPTER 7: RNA INTERFERENCE
CHAPTER 8: GENOMIC APPROACHES
APPENDICES
Common Recipes
Quick Reference for Enzymes Commonly Used in RNA Research
Cautions
Index
Imaging
A Laboratory Manual

Edited by and Series Editor Rafael Yuste, Howard Hughes Medical Institute, Columbia University

In recent years, imaging has rapidly become a tremendously valuable approach in nearly every field of biological research. Finding the right method and optimizing it for data collection can be a daunting process, even for an established imaging laboratory. *Imaging: A Laboratory Manual* is the cornerstone of a new laboratory manual series, designed as an essential guide for investigators who need these visualization techniques. This first volume is meant as a general reference for all fields, and describes the theory and practice of a wide array of imaging methods. From the basic chapters on optics, equipment and labeling to detailed explanations of advanced, cutting-edge methods like PALM, STORM, light sheet and high speed microscopy, *Imaging: A Laboratory Manual* is a vital resource for the modern biology laboratory.

2011, 952 pp., illus., appendices, index
Hardcover $246 £155
Paperback $169 £107
Also available as an Amazon Kindle book.

CONTENTS
Preface to the Book Series
Preface to Book 1

SECTION 1: INSTRUMENTATION
1. Microscope Principles and Optical Systems
2. Video Microscopy, Video Cameras, and Image Enhancement
3. Differential Interference Contrast Imaging of Living Cells
4. Infrared Video Microscopy
5. Confocal Microscopy: Principles and Practice
6. Spinning-Disk Systems
7. Introduction to Multiphoton-Excitation Fluorescence Microscopy
8. How to Build a Two-Photon Microscope with a Confocal Scan Head
9. Arc Lamps and Monochromators for Fluorescence Microscopy
10. Light-Emitting Diodes for Biological Microscopy
11. Lasers for Nonlinear Microscopy
12. Spectral Methods for Functional Brain Imaging
13. Preparation of Cells and Tissues for Fluorescence Microscopy

SECTION 2: LABELING AND INDICATORS
14. Labeling Cell Structures with Nonimmunological Fluorescent Dyes
15. Introduction to Immunofluorescence Microscopy
17. Biarsenical Labeling of Tetracysteine-Tagged Proteins
18. Bimolecular Fluorescence Complementation (BiFC) Analysis of Protein Interactions and Modifications In Living Cells
19. Preparation and Use of Retroviral Vectors for Labeling, Imaging, and Genetically Manipulating Cells
20. Nonviral Gene Delivery
21. Cellular Bioluminescence Imaging
22. Introduction to Indicators Based on Fluorescence Resonance Energy Transfer
23. How Calcium Indicators Work
24. Calibration of Fluorescent Calcium Indicators
25. Quantitative Aspects of Calcium Fluorimetry
26. Genetic Calcium Indicators: Fast Measurements Using Yellow Cameleons
27. Targeted Recombinant Aequorins
28. Imaging Intracellular Signaling Using Two-Photon Fluorescent Lifetime Imaging Microscopy
29. Imaging Gene Expression in Live Cells and Tissues
30. Multiphoton Excitation of Fluorescent Probes

SECTION 3: ADVANCED MICROSCOPY

Molecular Imaging
31. Single-Molecule FRET Using Total Internal Reflection Microscopy
32. Alternating Laser Excitation for Solution-Based Single-Molecule FRET
33. FIONA: Nanometer Fluorescence Imaging
34. Photoactivated Localization Microscopy (PALM): An Optical Technique for Achieving-10-nm Resolution

continued
Imaging
A Laboratory Manual

36. Imaging Live Cells Using Quantum Dots
37. Imaging Biological Samples with Atomic Force Microscopy

Cellular Imaging
38. Total Internal Reflection Fluorescence Microscopy
39. Fluorescence Correlation Spectroscopy: Principles and Applications
40. Image Correlation Spectroscopy: Principles and Applications
41. Time-Domain Fluorescence Lifetime Imaging Microscopy: A Quantitative Method to Follow Transient Protein–Protein Interactions in Living Cells
42. Single- and Two-Photon Fluorescence Recovery after Photobleaching
43. Fluorescent Speckle Microscopy
44. Polarized Light Microscopy: Principles and Practice
45. Array Tomography: High-Resolution Three-Dimensional Immunofluorescence
46. Monitoring Membrane Potential with Second-Harmonic Generation
47. Grating Imager Systems for Fluorescence Optical-Sectioning Microscopy

Tissue Imaging
48. Coherent Raman Tissue Imaging in the Brain
49. Ultramicroscopy: Light-Sheet-Based Microscopy for Imaging Centimeter-Sized Objects with Micrometer Resolution
50. In Vivo Optical Microendoscopy for Imaging Cells Lying Deep within Live Tissue
51. Light-Sheet-Based Fluorescence Microscopy for Three-Dimensional Imaging of Biological Samples
52. Photoacoustic Imaging

Fast Imaging
53. Imaging the Dynamics of Biological Processes via Fast Confocal Microscopy and Image Processing
54. High-Speed Two-Photon Imaging
55. Digital Micromirror Devices: Principles and Applications in Imaging
56. Spatial Light Modulator Microscopy
57. Temporal Focusing Microscopy

Uncaging
58. Caged Neurotransmitters and Other Caged Compounds: Design and Application
59. Nitrobenzyl-Based Caged Neurotransmitters
60. Uncaging with Visible Light: Inorganic Caged Compounds

SECTION 4: APPENDICES
1. Electromagnetic Spectrum
2. Fluorescence Microscopy Filters and Excitation/Emission Spectra
3. Safe Operation of a Fluorescence Microscope
4. Microscope Objective Lenses
5. Glossary
6. Cautions
Index
New imaging technologies have revolutionized the study of developmental biology. Where researchers once struggled to connect events at static timepoints, imaging tools now offer the ability to visualize the dynamic form and function of molecules, cells, tissues, and whole embryos throughout the entire developmental process. Imaging in Developmental Biology: A Laboratory Manual, a new volume in Cold Spring Harbor Laboratory Press’ Imaging series, presents a comprehensive set of essential visualization methods. The manual features primers on live imaging of a variety of standard model organisms including C. elegans, Drosophila, zebrafish, Xenopus, avian species, and mouse. Further techniques are organized by the level of visualization they provide, from cells to tissues and organs to whole embryos. Methods range from the basics of labeling cells to cutting-edge protocols for high-speed imaging, optical projection tomography, and digital scanned laser light-sheet fluorescence. Imaging has become a required methodology for developmental biologists, and Imaging in Developmental Biology: A Laboratory Manual provides the detailed explanations and instructions for mastering these necessary techniques.
25. Imaging Axon Pathfinding in *Xenopus* and Zebrafish In Vivo
Louis Leung and Christine E. Holt

26. Axons and Dendrites: In Vivo Time-Lapse Imaging of Neuronal Development in *Xenopus*
Edward S. Ruthazer, Anne Schohl, Neil Schwartz, Aydin Tavakoli, Marc Tremblay, and Hollis T. Cline

27. In Vivo Imaging of Synaptogenesis in Zebrafish
Jesse D. Jones and Michelle R. Emound

28. Live Imaging of Developing Retinal Circuits
Philip R. Williams, Joshua L. Morgon, Daniel Kirschehensteiner, and Rachel O.L. Wong

29. Imaging the Developing Mammalian Neuromuscular Junction In Vivo
Stephen G. Turner, Mark K. Walsh, and Jeff W. Lichtman

30. Live Imaging of Developing Hippocampal Neurons in Culture
Stefanie Kaech, Chun-Fang Huang, and Gary Banker

31. Imaging of Synapse Formation and Function in Neuronal Cell Cultures by Quantitative Immunocytochemistry
Camin Dean and Peter Scheiffele

32. Simultaneous Imaging of Structural Plasticity and Calcium Dynamics in Developing Dendrites and Axons
Friederike Siegel and Christian Lohmann

33. Simultaneous Patch-Clamping and Calcium Imaging in Developing Dendrites
Thomas Kleinendest and Christian Lohmann

34. Imaging Synaptic Protein Dynamics in the Cerebral Cortex In Vitro and In Vivo
Robby M. Weiner, Travis C. Hill, Andrew M. Hamilton, and Karen Zito

35. In Vivo Imaging of Axonal and Dendritic Structures in Developing Cortex
Alberto Cruz-Martin and Carlos Portera-Cailliau

SECTION 3: DYNAMIC TISSUES AND ORGANS

36. Quantifying the Bicoid Morphogen Gradient in Living Fly Embryos
Alexander H. Morrison, Martin Scheeler, Julien Dubuis, and Thomas Gregor

37. Quantitative Imaging of Morphogen Gradients in *Drosophila* Imaginal Discs
Anna Kicheva, Laurent Holtzer, Ossrud Wartlick, Thomas Schmidt, and Marcos Gonzalez-Gaitin

38. Methods to Investigate Molecular Mechanisms and Cellular Mechanics Responsible for Morphogenesis in *Xenopus laevis* Embryos
Hye Young Kim and Lance A. Davidson

39. Notochord Formation in Zebrafish
Samantha J. England and Richard J. Adams

40. High-Resolution, Multiphoton Time-Lapse Imaging of Early Chick Embryos
Octavio Voiculescu and Claudio D. Stern

41. Four-Dimensional Fluorescent Imaging of Embryonic Quail Development
Christie A. Canaria and Rusty Lansford

42. Imaging Kidney Development
Frank Costantin, Tomoko Watanabe, Benson Lu, Xuan Chi, and Shankar Srinivas

43. Practical Considerations for Long-Term Time-Lapse Imaging of Epithelial Morphogenesis in Three-Dimensional Organotypic Cultures
Andrew J. Ewald

44. High-Speed Optical Coherence Tomography Imaging of the Beating Avian Embryonic Heart
Shi Gu, Michael W. Jenkins, Michiko Watanabe, and Andrew M. Rollini

45. Imaging Mouse Embryonic Cardiovascular Development
Irina V. Larina, Monica D. Garcia, Tegy J. Vadakkan, Kirill V. Larin, and Mary E. Dickinson

46. Micro-Ultrasound and Its Application to Three-Dimensional Organotypic Cultures
Seth W. Ruffins and Russell E. Jacobs

47. Quantitative Imaging of Gene Expression in *Drosophila* Embryos
Svetlana Sarkova, Ekaterina Myasnikova, Konstantin N. Kozlov, Andrei Pisarev, John Reinitz, and Maria Samsonova

48. Three-Dimensional Morphology and Gene Expression Mapping for the *Drosophila* Blastoderm
David W. Knowles

49. From Confocal Imaging to 3D Model: A Protocol for Creating 3D Digital Replicas of Ascidian Embryos
François B. Robin, Delphine Danaga, Olivier Tassy, Daniel Sobral, Fabrice Daian, and Patrick Lemaire

50. Preparation of Fixed *Xenopus* Embryos for Confocal Imaging
John B. Wallingford

51. Optical Projection Tomography of Vertebrate Embryo Development
Laura Quintana and James Sharpe

52. X-Ray Microtomographic Imaging of Vertebrate Embryos
Brian D. Metcalf

53. Episopic Three-Dimensional Imaging of Embryos
Timothy J. Mohun and Wolfgang J. Weninger

54. High-Throughput Analysis of Mouse Embryos by Magnetic Resonance Imaging
Simon D. Bamforth, Jurgen E. Schneider, and Shruman Bhattacharya

55. MRI in Developmental Biology and the Construction of Developmental Atlases
Seth W. Ruffins and Russell E. Jacobs

56. Automated Lineage and Expression Profiling in Live Caenorhabditis elegans Embryos
John Isaac Murray and Zhirong Bao

57. Imaging the Development of Entire Zebrafish and *Drosophila* Embryos with Digital Scanned Laser Light-Sheet Fluorescence Microscopy (DLSM)
Philipp J. Keller, Annette D. Schmidt, Jochen Wittbrodt, and Ernst H.K. Stelzer

SECTION 5: APPENDICES

1. Electromagnetic Spectrum
Marilu Hoepner

2. Fluorescence Microscopy Filters and Excitation/Emission Spectra

3. Safe Operation of a Fluorescence Microscope

4. Microscope Objective Lenses

5. Resources for Live Imaging of *Drosophila*

6. Glossary of Imaging Terms

7. Cautions

Index
Imaging in Neuroscience
A Laboratory Manual

Edited by Fritjof Helmchen, Brain Research Institute, University of Zurich, Switzerland, and Arthur Konnerth, Institute for Neuroscience, Technical University Munich, Germany; Series Editor, Rafael Yuste, Howard Hughes Medical Institute, Columbia University

As imaging technologies have revolutionized research in many areas of biology and medicine, neuroscientists have often pioneered the use of these new visualization techniques. Imaging in Neuroscience: A Laboratory Manual, part of Cold Spring Harbor Laboratory Press’ Imaging series, provides the definitive collection of methods in use in this groundbreaking field. With over 90 chapters, the manual offers a depth of coverage unavailable from any other source. Sections focus on imaging at the molecular level, axons and nerve terminals, spines and dendrites, neurons and circuits in vitro, neurons and circuits in vivo, glia, brain dynamics, and behavior and brain pathology. Protocols range from basic techniques such as maintaining live cells and tissue slices during imaging to recent breakthroughs in optogenetics, uncaging, calcium imaging and imaging neuronal activity. Imaging in Neuroscience: A Laboratory Manual is an essential guide to discovering and implementing these techniques in the neuroscience laboratory.

2011, 1084 pp., illus., index
Hardcover $287 £181
Paperback $200 £126

CONTENTS
Preface to the Book Series, xv
Preface, xix

SECTION 1 MOLECULAR TOOLS FOR IMAGING
1. Tracking Receptors Using Individual Fluorescent and Nonfluorescent Nanolabels
 Laurent Cognet, Brachim Lounis, and Daniel Choquet
2. Imaging Single Receptors with Quantum Dots
 Sabine Lévi, Maxime Dahan, and Antoine Triller
3. Synapto-pHluorins: Genetically Encoded Reporters of Synaptic Transmission
 Gero Miesenböck
4. Spatially Resolved Flash Photolysis via Chemical Two-Photon Uncaging
 Diana L. Petit and George J. Augustine
5. Recombinant Fluorescent Rabies Virus Vectors for Tracking Neurons and Synaptic Connections
 Nadin Hagendorf and Karl-Klaus Conzelmann
6. Generating and Imaging Multicolor Brainbow Mice
 Tamia W. Weismann, Jonhur R. Sanes, Jeff W. Lichtman, and Joan Livet
7. The Use of BAC Transgenic Mice to Label Genetically Defined Cell Populations and the GENSAT Database of Engineered Mouse Strains
 Eric F. Schmidt, Laura Kus, Shiaoching Gong, and Nathaniel Heintz

SECTION 2 AXONS AND NERVE TERMINALS
8. Imaging Neuronal Activity with Genetically Encoded Calcium Indicators
 Lin Tian, S. Andrew Hires, and Loren L. Looger
9. Imaging Synaptic Inhibition with a Genetically Encoded Chloride Indicator
 Ken Berglund, Thomas Kauer, Guoping Feng, and George J. Augustine
10. Recombinant Fluorescent Rabies Virus Vectors for Tracing Neurons and Synaptic Connections
 Nadin Hagendorf and Karl-Klaus Conzelmann
11. Confocal Spot Detection of Presynaptic Ca2+ Domains
 David DiGregorio
12. Ca2+ Uncaging in Nerve Terminals
 Olexiy Kochubey and Ralf Schneggenburger
13. Multiple Light Scattering Changes Associated with Secretion from Peptidergic Nerve Terminals
 Brian M. Salzberg, Martin Muschol, Paul Kosterin, and Ana Lia Obaid
 Peer Hoopmann, Silvio O. Rizzoli, and William J. Betz
15. Imaging Exocytosis with Total Internal Reflection Fluorescence Microscopy
 Christina Joselevitch, David Zenisek, and David Perrais
16. Interferometric Detection of Action Potentials
 Arthur LaPorta and David Kleinfeld
17. Imaging Sodium in Axons and Dendrites
 William Ross, Ilya Fleidervish, and Nechama Lasser-Ross
18. Generation and Screening of Mice with Transgenic Neuronal Labeling Controlled by Thy1 Regulatory Elements
 Petar Marinkovic, Leanne Godinho, and Thomas Misgeld
19. Imaging Sodium in Axons and Dendrites
 William Ross, Ilya Fleidervish, and Nechama Lasser-Ross
20. Generation and Screening of Mice with Transgenic Neuronal Labeling Controlled by Thy1 Regulatory Elements
 Petar Marinkovic, Leanne Godinho, and Thomas Misgeld

SECTION 3 SPINES AND DENDRITES
21. Presynaptic Calcium Measurements Using Bulk Loading of Acetoxymethyl Indicators
 Stephen D. Brenowitz and Wade G. Regehr
22. Imaging Presynaptic Calcium Transients Using Dextran-Conjugated Indicators
 Stephen D. Brenowitz and Wade G. Regehr
23. Confocal Spot Detection of Presynaptic Ca2+ Domains
 David DiGregorio
24. Imaging Neuronal Activity with Genetically Encoded Calcium Indicators
 Lin Tian, S. Andrew Hires, and Loren L. Looger
25. Imaging Synaptic Inhibition with a Genetically Encoded Chloride Indicator
 Ken Berglund, Thomas Kauer, Guoping Feng, and George J. Augustine
26. Recombinant Fluorescent Rabies Virus Vectors for Tracking Neurons and Synaptic Connections
 Nadin Hagendorf and Karl-Klaus Conzelmann
27. Generating and Imaging Multicolor Brainbow Mice
 Tamia W. Weismann, Jonhur R. Sanes, Jeff W. Lichtman, and Joan Livet
28. The Use of BAC Transgenic Mice to Label Genetically Defined Cell Populations and the GENSAT Database of Engineered Mouse Strains
 Eric F. Schmidt, Laura Kus, Shiaoching Gong, and Nathaniel Heintz

www.cshlpress.org
1-855-452-6793
24. Stimulated Emission Depletion (STED) Imaging of Dendritic Spines
Katrin I. Willig and U. Valentin Nügler

25. Two-Photon Uncaging Microscopy
Masanori Matsuzaki and Haruo Kasai

26. Acousto-Optical Deflector–Based Patterned Ultraviolet Uncaging of Neurotransmitter for the Study of Neuronal Integration
Eugene F. Ciciliano, Shy Shoham, Daniel H. O’Connor, Dmitry V. Sarkisov, and Samuel S.-H. Wang

27. Two-Photon Calcium Imaging of Dendritic Spines
Roberto Ayata, Jose H. Goldberg, and Rafael Yuste

28. Imaging Calcium Waves and Sparks in Central Neurons
William N. Ross and Satoshi Manita

29. Dendritic Voltage Imaging
Knut Hollof, Marco Canepari, Kaspar Vogt, Arthur Konnerth, and Dejan Zecevic

30. Two-Photon Sodium Imaging in Dendritic Spines
Christine R. Rose

31. Transcranial Two-Photon Imaging of the Living Mouse Brain
Jaime Grutzendler, Guang Yang, Feng Pan, Christopher N. Parkhurst, and Wen-Biao Gan

32. Imaging Neocortical Neurons through a Chronic Cranial Window
Anthony Holtmaat, Vincenzo de Paola, Lisinda Willbrecht, Josh T. Trachtenberg, Karel Svoboda, and Carlos Portera-Cailliau

SECTION 4 NEURONS AND CIRCUITS IN VITRO

33. Maintaining Live Cells and Tissue Slices in the Imaging Setup
Michael E. Dailey, Glen S. Marrs, and Dana Karpinos

34. Calcium Imaging in Neuronal Endoplasmic Reticulum
Natasha Solovyova and Alexei Verkhratsky

35. Dye Loading with Whole-Cell Recordings
Hartmut Schmidt and Jens Eilers

36. A Single-Compartment Model of Calcium Dynamics in Nerve Terminals and Dendrites
Fritjof Helmchen and David W. Tank

37. Imaging Action Potentials with Calcium Indicators
Rafael Yuste, Jason MacLean, Joshua Vogelstein, and Liam Paninski

38. Structure–Function Analysis of Genetically Defined Neuronal Populations
Alexander Grob and Patrik Krieger

39. Infrared-Guided Neurotransmitter Uncaging on Dendrites
Hans-Ulrich Dott, Matthias Eder, Anja Schierloh, and Walter Ziegglänsberger

40. Uncaging Calcium in Neurons
Kerry R. Delaney and Vahid Shabrezaei

41. An Optical Fiber–Based Uncaging System
Karl Kandler, Tsuan Nguyen, Jihyun Noh, and Richard S. Givens

42. Multiphoton Stimulation of Neurons and Spines
Hajime Hirase, Volodymyr Nikolenko, and Rafael Yuste

43. Circuit Mapping by Ultraviolet Uncaging of Glutamate
Gordon M.G. Shepherd

44. Two-Photon Mapping of Neural Circuits Volodymyr Nikolenko, Elodie Fino, and Rafael Yuste

45. All-Optical In Situ Histology of Brain Tissue with Femtosecond Laser Pulses
Philbert S. Tsai, Pablo Blinder, Jeffrey A. Squier, and David Kleinfeld

46. Ballistic Delivery of Dyes for Structural and Functional Studies of the Nervous System
Wen-Biao Gan, Jaime Grutzendler, Rafael Yuste, Jason MacLean, Joshua Vogelstein, and Arthur Konnerth

SECTION 5 NEURONS AND CIRCUITS IN VIVO

47. Two-Photon Targeted Patching and Electroporation In Vivo
Michael Häusser and Troy W. Margrie

49. In Vivo Two-Photon Calcium Imaging Using Multicell Bolus Loading of Fluorescent Indicators
Nathalie L. Rochefort, Christine M. Grienberger, and Arthur Konnerth

50. In Vivo Local Dye Electroporation for Ca2+
Imaging and Neuronal-Circuit Tracing
Shen Nagayama, Max L. Fletcher, Wenhui Xiong, Xiaohua Lu, Shaoqun Zeng, and Wei R. Chen

51. In Vivo Two-Photon Calcium Imaging in the Visual System
Kenichi Okhi and R. Clay Reid

52. Three-Dimensional Imaging of Neuronal Network Activity
Byron M. Kampa, Werner Gobel, and Fritjof Helmchen

53. High-Speed Two-Photon Calcium Imaging of Neuronal Population Activity Using Acousto-Optic Deflectors
Benjamin F. Grewe and Fritjof Helmchen

54. Calcium Imaging in the Drosophila Olfactory System with a Genetic Indicator
Cory M. Root, Allen M. Wong, Jorge Flores, and Jing W. Wang

55. Calcium Imaging in the Intact Olfactory System of Zebrafish and Mouse
Rainer W. Friedrich

56. Calcium Imaging in Populations of Olfactory Neurons by Planar Illumination Microscopy
Timothy E. Holy

57. Functional Neuron-Specific Expression of Genetically Encoded Fluorescent Calcium Indicator Proteins in Living Mice
Matthias Heindorf and Mazahir T. Haasn

58. Chronic Calcium Imaging of Neurons in the Visual Cortex Using a Troponin C–Based Indicator
Alexandre Ferriera Santos and Mark Hübener

59. Two-Photon Chloride Imaging Using MQAE
In Vitro and In Vivo
Yury Kovalechuk and Olga Garaschuk

60. Intrinsic Optical Imaging of Functional Maps of Defined Neuronal Populations
Avrahami Brotman, Tanja L. Dietzel, and Tobias Bohnheffer

SECTION 6 GLIA

61. Monitoring Exocytosis in Astrocytes with Total Internal Reflection Fluorescence Microscopy
Paola Bezzi and Andrea Volterra

62. Monitoring Exocytosis in Astrocytes with Total Internal Reflection Fluorescence Microscopy
Paola Bezzi and Andrea Volterra

continued
Imaging in Neuroscience
A Laboratory Manual

63. In Vivo Labeling of Cortical Astrocytes with Sulforhodamine 101
Axel Nimmerjahn and Fritjof Helmchen
64. In Vivo Imaging of Structural and Functional Properties of Astrocytes
Takahiro Takano, Daniel Christensen, and Maiken Nederhaard
65. Imaging Calcium Waves in Cerebellar Bergmann Glia
Michael Beierlein
66. In Vivo Calcium Imaging of Cerebellar Astrocytes with Synthetic and Genetic Indicators
Bernd Kuhn, Tycho M. Hoogland, and Samuel S.-H. Wang
67. Two-Photon Imaging of Neurons and Glia in the Spinal Cord In Vivo
Heinz Steffen, Fabien Nadrigny, and Frank Kirchhoff
68. Imaging Microglia in Brain Slices and Slice Cultures
Michael E. Dailey, Ukpong Eyo, Leah Fuller, John Hass, and Dana Kurpius
69. Two-Photon Imaging of Astrocytic and Neuronal Excitation in Cerebellar Cortex of Awake Mobile Mice
Axel Nimmerjahn and Mark J. Schnitzer

SECTION 7 □BRAIN DYNAMICS AND BEHAVIOR

70. Automated Imaging and Analysis of Behavior in Caenorhabditis elegans
Eviatar Yemini, Rex A. Kerr, and William R. Schafer
71. In Vivo Dendritic Calcium Imaging in the Fly Visual System
Alexander Borst, Winfried Denk, and Jürgen Haag
72. Imaging Neuronal Activity and Motor Behavior in Zebrafish
Germán Sumbre and Mu-Ming Poo
73. Confocal Calcium Imaging of Neuronal Activity in Larval Zebrafish
Joseph R. Fetcho
74. Voltage-Sensitive Dye Imaging of Neocortical Activity
Amiram Grinvald, David B. Omer, Dablia Sharon, Ivo Vanzetta, and Rina Hilderheim
75. Voltage-Sensitive Dye Imaging of Cortical Spatiotemporal Dynamics in Awake Behaving Mice
Carl C.H. Petersen
76. Two-Photon Imaging of Neutral Activity in Awake Mobile Mice
Daniel Donebeck and David Tank
77. Imaging Neuronal Population Activity in Awake and Anesthetized Rodents
David S. Greenberg, Damian J. Wallace, and Jason N.D. Kerr
78. Miniaturization of Two-Photon Microscopy for Imaging in Freely Moving Animals
Fritjof Helmchen, Winfried Denk, and Jason N.D. Kerr
79. Optogenetics: Opsins and Optical Interfaces in Neuroscience
Antoine R. Adamantidis, Feng Zhang, Luis de Leca, and Karl Deisseroth
80. Optogenetics in Freely Moving Mammals: Dopamine and Reward
Feng Zhang, Hsing-Chen Tsai, Raag D. Arian, Garret D. Stuber, Antoine R. Adamantidis, Luis de Leca, Antonello Boscia, and Karl Deisseroth
81. In Vivo Calcium Recordings and Channelrhodopsin-2 Activation through an Optical Fiber
Helmut Adelsberger, Christine Grienberger, Albrecht Stroh, and Arthur Konnerth
82. Fiber-Optic Calcium Monitoring of Dendritic Activity In Vivo
Masanori Murayama and Matthew Larkum
83. Imaging the Neocortex Functional Architecture Using Multiple Intrinsic Signals: Implications for Hemodynamic–Based Functional Imaging
Amiram Grinvald, Dablia Sharon, David Omer, and Ivo Vanzetta

SECTION 8 □BRAIN PATHOLOGY

84. Two-Photon Imaging of Blood Flow in Cortex
Jonathan D. Driscoll, Andy Y. Shih, Patrick J. Drew, Gert Caunwenberghs, and David Kleinfeld
85. Optically Induced Occlusion of Single Blood Vessels in Neocortex
Andy Y. Shih, Nozomi Nishimura, John Nguyen, Beth Friedman, Patrick D. Lyden, Chris B. Schaffer, and David Kleinfeld

SECTION 9 □APPENDICES

1. Electromagnetic Spectrum
Marila Hoeppner
2. Fluorescence Microscopy Filters and Excitation/Emission Spectra
3. Safe Operation of a Fluorescence Microscope
4. Microscope Objective Lenses
5. Glossary of Imaging Terms
6. Cautions

Index
Edited by Robert D. Goldman, Feinberg School of Medicine, Northwestern University, Jason R. Swedlow, University of Dundee, and David L. Spector, Cold Spring Harbor Laboratory

The second edition of Live Cell Imaging: A Laboratory Manual expands upon and extends the collection of established and evolving methods for studying dynamic changes in living cells and organisms presented in the well-known first edition. There are 16 new chapters and the 21 updated chapters in this new edition. They include advances in atomic force microscopy, structured illumination microscopy and other 3-D approaches, as well as imaging in single cells in animals and in plants. New analytical options include live high-throughput/high-content screening in mammalian cells and computational analysis of live cell data. The manual presents hands-on techniques as well as background material, and can serve as a text in advanced courses. The first section covers principles and fundamental issues of detection and imaging; the second provides detailed protocols for imaging live systems.

2010, 736 pp., illus., appendix, index
Hardcover $246 £155
Paperback $169 £107

CONTENTS
SECTION 1: DETECTION AND APPROACHES TO LIVE CELL IMAGING

1. Fluorescent Protein Tracking and Detection
 M.A. Rizzo, M.W. Davidson, and D.W. Piston

2. Constructing and Expressing Fluorescent Protein Fusions
 D.L. Spector and R.D. Goldman

3. Micropatterning Cell-Substrate Adhesions Using Linear Polymacrylamide as the Blocking Agent
 W.-h. Guo and Y.-l. Wang

4. CCD Cameras for Fluorescence Imaging of Living Cells
 W.C. Salmon and J.C. Waters

5. Fluorescence Perturbation Techniques to Study Mobility and Molecular Dynamics of Proteins in Live Cells: FRAP, Photoactivation, Photoconversion, and FLIP
 A. Bancaud, S. Huet, G. Rabut, and J. Ellenberg

6. Imaging Protein State in Cells
 H.E. Grecco and P.I.H. Bastiaens

7. A Versatile, Multicolor Total Internal Reflection Fluorescence and Spinning-Disk Confocal Microscope System for High-Resolution Live Cell Imaging
 W.D. Shin, R.S. Fischer, P. Kanchanawong, Y. Kim, J. Lim, K.A. Myers, Y. Nishimura, S.V. Platnikov, I. Thievessen, D. Yarar, B. Sabass, and C.M. Waterman

8. Confocal Microscopy, Deconvolution, and Structured Illumination Methods
 J.M. Murray

9. Atomic-Force Microscopy for Biological Imaging and Mechanical Testing across Length Scales
 M. Plodinec, M. Loparic, and U. Aebi

10. OMX: A New Platform for Multimodal, Multichannel Wide-Field Imaging
 I.M. Dobbie, E. King, R.M. Parton, P.M. Carlton, J.W. Sedat, J.R. Swedlow, and I. Davis

11. Digital Scanned Laser Light Sheet Fluorescence Microscopy
 P.J. Keller and E.H.K. Stelzer

continued
Live Cell Imaging
A Laboratory Manual
Second Edition

12. First Steps for Fluorescence Correlation Spectroscopy of Living Cells
M. Kinjo, H. Sakata, and S. Mikuni

13. Tracking and Quantitative Analysis of Dynamic Movements of Cells and Particles
K. Rohr, W.J. Godinez, N. Harder, S. Wörz, J. Mattes, W. Tsaruky, and R. Eils

K.E. Kasza, D. Vader, S. Köster, N. Wang, and D.A. Weitz

15. Computational Image Analysis of Cellular Dynamics: A Case Study Based on Particle Tracking
K. Jaqaman and G. Danuser

16. Software Tools, Data Structures, and Interfaces for Microscope Imaging
N. Stuurman and J.R. Swedlow

17. High-Throughput Microscopy Using Live Mammalian Cells
S. Terjung, T. Walter, A. Seitz, B. Neumann, R. Pepperkok, and J. Ellenberg

SECTION 2: IMAGING OF LIVE CELLS AND ORGANISMS

18. In Vivo Imaging of Mammalian Cells
J.R. Swedlow, I.M. Porter, M. Posch, and S. Swift

19. Live Cell Imaging of Yeast

20. Live Imaging of Caenorhabditis elegans
B. Podbielniwicz and Y. Gruenbaum

21. Live Cell Imaging of Plants
Y. Fang and D.L. Spector

22. Pushing the Limits of Live Cell Imaging in Droophiba
R.M. Parton, A.M. Vallés, I.M. Dobbie, and I. Davis

23. Dynamic, Long-Term, In Vivo Imaging of Tumor-Stroma Interactions in Mouse Models of Breast Cancer Using Spinning-Disk Confocal Microscopy
A.J. Ewald, Z. Werb, and M. Egeblad

24. High-Resolution Multiphoton Imaging of Tumors In Vivo
J. Wyckoff, B. Gligorijevic, D. Entenberg, J. Segall, and J. Condeelis

25. Correlated Live Cell Light and Electron Microscopy Using Tetracysteine Tags and Biarsenicals
G.M. Gaietta, T.J. Deerinck, and M.H. Ellisman

26. Intravitral Microscopy of Normal and Diseased Tissues in the Mouse
R.K. Jain, L.L. Munn, and D. Fukumura

27. Imaging Lipids in Living Cells
C. Schultz, A.B. Neef, T.W. Gadella, Jr., and J. Goedhart

28. Development of Mammalian Cell Lines with lac Operator-Tagged Chromosomes
Y.G. Strukov, M. Platz, and A.S. Belmont

29. Imaging Gene Expression in Living Cells
S.M. Janicki and D.L. Spector

30. Studying Mitosis in Cultured Mammalian Cells
P. Wadhwa

31. Imaging Intermediate Filament Proteins in Living Cells
E.R. Kuczmański, T. Shimi, and R.D. Goldman

32. Methods for Expressing and Analyzing GFP-Tubulin and GFP-Microtubule-Associated-Proteins
H.V. Goodson, J.S. Dzurisin, and P. Wadhwa

33. Imaging of Membrane Systems and Membrane Traffic in Living Cells
E.L. Snapp and P. Lajoie

34. Imaging Live Cells under Mechanical Stress
B.P. Helmke and P.F. Davies

35. Imaging Single Molecules Using Total Internal Reflection Fluorescence Microscopy
S.L. Reck-Peterson, N.D. Derr, and N. Stuurman

36. Cellular Imaging Using Total Internal Reflection Fluorescent Microscopy
D. Toomre

37. Visualization and Quantification of Single RNA Molecules in Living Cells
Y. Shav-Tal, S.M. Shenoy, and R.H. Singer

Appendix: Cautions

Index
Cold Spring Harbor Laboratory’s long-running Neurobiology of Drosophila course has trained a generation of neuroscientists, many of whom have become leaders in the field. *Drosophila Neurobiology: A Laboratory Manual* offers the detailed protocols and background material developed by the course instructors to all researchers interested in using *Drosophila* as an experimental model for investigating the nervous system. The manual covers three approaches to the field: Studying Neural Development in *Drosophila melanogaster*, Recording and Imaging in the *Drosophila* Nervous System, and Studying Behavior in *Drosophila*. Techniques described include molecular, genetic, electrophysiological, imaging, behavioral and developmental methods. Written by leading experts from the community, *Drosophila Neurobiology: A Laboratory Manual* is an essential guide for researchers at all levels, from the beginning graduate student through the established primary investigator.

2010, 534 pp., illus., appendix, index
Paperback $154 £97
Drosophila Neurobiology
A Laboratory Manual

15. Measuring Sound-Evoked Potentials from Drosophila Johnston's Organ
 Daniel F. Eberl and Maurice J. Kernan

16. Chemosensory Coding in Single Sensilla
 Richard Benton and Anupama Dahanukar

17. Electrophysiological Recording from Neurons in Drosophila Embryos and Larvae
 Richard Marley and Richard A. Baines

18. In Vivo Whole-Cell Recordings in the Drosophila Brain
 Mala Murthy and Glenn Turner

19. Calcium Imaging
 Gregory T. Macleod

20. Imaging Neuropeptide Release and Signaling in the Drosophila Neuromuscular Junction with Green Fluorescent Protein
 Edwin S. Levitan and Dinara Shakiryanova

21. In Vivo Imaging of Drosophila Larval Neuromuscular Junctions to Study Synapse Assembly
 Till F.M. Andlauer and Stephan J. Sigrist

22. Experimental Methods for Examining Synaptic Plasticity
 Douglas P. Olsen and Haig Keshishian

23. Acute Inactivation of Proteins Using FIAsh-FALI
 Ron L.P. Habets and Patrik Verstreken

SECTION 3: STUDYING BEHAVIOR IN DROSOPHILA

24. Studying Behavior in Drosophila: An Introduction to Section 3
 Scott Waddell

25. Visual Learning and Perception in Drosophila
 Bruno van Swinderen

26. Aversive and Appetitive Olfactory Conditioning
 Michael J. Krashes and Scott Waddell

27. Odor–Taste Learning in Larval Drosophila
 Bertram Gerber, Roland Biernacki, and Jeannette Thum

28. Studying Aggression in Drosophila
 Sarah J. Certel and Edward A. Kravitz

29. Courtship
 Stephen F. Goodwin and Kevin M.C. O’Dell

30. Measurement of Courtship Plasticity in Drosophila
 Aki Ejima and Leslie C. Griffith

31. Sleep and Circadian Behavior Monitoring in Adult Drosophila
 Cory Pfeiffenberger, Bridget C. Lear, Kevin P. Keegan, and Ravi Allada

32. Feeding Behavior of Drosophila Larvae
 Ping Shen

Appendix: Cautions
Index
The mouse has become a standard laboratory model organism, particularly for the study of hematopoiesis, the immune system, and inflammation. Although laboratories studying stem cells, blood, and blood-forming tissues have assimilated many new molecular diagnostic methods, the identification of cell lineages through classical light microscopic techniques is often poorly understood and practiced. *Mouse Hematology* presents a concise review of conventional methods for the preparation, enumeration, and microscopic examination of blood and blood-forming tissues of the laboratory mouse. Along with a short laboratory manual featuring detailed protocols, *Mouse Hematology* includes a DVD of short video demonstrations of the techniques and a poster of blood cell types for easy identification at the microscope. These rapid, inexpensive assessments can save valuable time and resources essential to the design, development, and interpretation of experiments.

2010, 100 pp., illus., appendix, index; poster; DVD
Hardcover $169 £107
Paperback $103 £65
ISBN 978-0-879698-85-0

CONTENTS

Preface

1. Collection of Peripheral Blood
2. Counting Red Blood Cells, Platelets, and Viable Nucleated White Blood Cells
3. Peripheral Blood Films and Cytospin Preparations
5. Preparation of Bone Marrow for Microscopic Examination
6. Cell Differential Assessments of Bone Marrow

Conclusion
References
Cautions
Index

Videos on Accompanying DVD

Video 1 Venous Access for Blood Film Using Lateral Tail Vein
Video 2 Venous Access for Blood Film Using Tip of Tail
Video 3 Blood Film
Video 4 Staining with Coplin Jar or Carriages
Video 5 Coverslip
Video 6 Cytocentrifuge Procedures
Video 7 Surgical Exposure of Femur
Video 8 Brush Smear of Marrow
Poster

Mouse Peripheral Blood Cells

A quick reference guide to mouse peripheral blood cells, including brief descriptions of each lineage, total cellularities, and hematological/physiological parameters of interest.
Genetics of Complex Human Diseases
A Laboratory Manual

Edited by Ammar Al-Chalabi, MRC Centre for Neurodegeneration Research, King's College London, and Laura Almasy, Southwest Foundation for Biomedical Research, San Antonio, Texas

Many human diseases—including Alzheimer’s disease, schizophrenia, cancer, and cardiovascular disease—show complex inheritance that requires sophisticated analysis. Genetics of Complex Human Diseases: A Laboratory Manual brings together the tools that geneticists use to find disease genes with the genetic concepts and statistical theories that underpin these research approaches. Topics covered include basic genetics and Mendelian inheritance, statistical methods, genetic epidemiology, linkage studies, transmission disequilibrium test analysis, variance components analysis, genome-wide association studies, copy-number variation, methods for high-throughput genotyping, the complexity of RNA editing, and genetic computer programs. The book’s chapters, written by leading investigators in the field, blend practical information and reviews of each topic, providing both the how and the why of complex disease analysis. Genetics of Complex Human Diseases is an important guide for anyone with an interest in human genetics or who uses genetic techniques in the study of diseases with complex inheritance.

2009, 220 pp., illus., index
Hardcover $162 £102
Paperback $97 £61
ISBN 978-0-879698-82-9
ISBN 978-0-879698-83-6

CONTENTS
1. Introduction
 Ammar Al-Chalabi and Laura Almasy
2. “Statistics 101”—A Primer for the Genetics of Complex Human Diseases
 Janet Sinsheimer
3. Linkage Analysis of Discrete Traits
 Ingrid B. Borecki and John P. Rice
4. Epidemiologic Considerations in Complex Disease Genetics
 John Gallacher
5. Variance Component Methods for Analysis of Complex Phenotypes
 Laura Almasy and John Blangero
6. Multiple Testing and Power Calculations in Genetic Association Studies
 Hon-Cheong So and Pak C. Sham
7. Introduction to Genetic Association Studies
 Cathryn M. Lewis and Jo Knight
8. Genome-Wide Association Studies
 Ammar Al-Chalabi
9. Introduction to Linkage Disequilibrium, the HapMap, and Imputation
 Benjamin M. Neale
10. Meta-Analysis of Genome-Wide Association Studies
 Paul I.W. de Bakker, Benjamin M. Neale, and Mark J. Daly
 Ruth J.F. Loos and Nicholas J. Wareham
12. Family-Based Genetic Association Tests
 Eden R. Martin and Evadnie Rampersaud
13. Copy-Number Variation and Common Human Diseases
 Dheeraj Malhatra and Jonathan Sebat
14. Oncogenomics
 Simon J. Furney, Gunes Gundem, and Nuria Lopez-Bigas
15. When the Genetic Code Is Not Enough—How Sequence Variations Can Affect Pre-mRNA Splicing and Cause (Complex) Disease
 Brage Storstein Andresen and Adrian R. Krainer
16. Laboratory Methods for High-Throughput Genotyping
 Howard J. Edenberg and Yunlong Liu
17. Gene Set Analysis and Network Analysis for Genome-Wide Association Studies
 Inti Pedroso and Gerome Breen
Index
Strategies for studying gene regulation mechanisms have changed dramatically over the past several years in light of the emergence of complete genome sequences for many organisms as well as the development of or improvements to technologies such as chromatin immunoprecipitation, RNA interference, microarrays, and proteomics.

The first edition of the highly successful *Transcriptional Regulation in Eukaryotes*, written by Michael Carey and Stephen Smale at UCLA, provided a comprehensive source of strategic, conceptual, and technical information for investigating the complexities of gene regulation at the level of transcription.

With the ever-increasing importance of genome data and the appearance of new and better techniques, the second edition of this book has added a third author, Craig Peterson at the University of Massachusetts Medical School. In addition to a new chapter on the in vitro analysis of chromatin templates for DNA-binding studies and transcription, this second edition has been extensively rewritten and updated to discuss new advances in the field and their impact on gene regulation mechanisms. The second edition retains the approach of the first in covering both the conceptual and practical aspects of how to study the regulation of a newly isolated gene and the biochemistry of a new transcription factor.

Transcriptional Regulation in Eukaryotes serves as both a powerful textbook and manual for advanced instruction in molecular biology which

- supplements clearly written text with extensive illustrations
- puts methods in the context of underlying theory
- gives expert recommendations on experimental strategies
- encourages creativity in investigative design
- explains protocols for essential techniques step by step, with extensive advice on troubleshooting
- provides the latest methods in use in the field

This important and unique book is essential reading for anyone pursuing the analysis of gene expression in model systems or disease states, providing underlying theory and perspective to the newcomer and the latest techniques to the expert.

2009, 620 pp., appendix, index

Hardcover $246 £155

Paperback $169 £107

ISBN 978-0-879697-77-8

CONTENTS

Preface

Overview

Abbreviations and Acronyms

1. A Primer on Transcriptional Regulation in Mammalian Cells

2. Initial Strategic Issues

3. Transcription Initiation Site Mapping

4. Functional Assays for Promoter Analysis

5. Identification and Analysis of Distant Control Regions

6. Identifying *cis*-Acting DNA Elements within a Control Region

continued
Transcriptional Regulation in Eukaryotes

Concepts, Strategies, and Techniques, Second Edition

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Identification of DNA-Binding Proteins and Their Genes</td>
</tr>
<tr>
<td>8</td>
<td>Confirming the Functional Importance of a Protein–DNA Interaction</td>
</tr>
<tr>
<td>9</td>
<td>In Vivo Analysis of an Endogenous Control Region</td>
</tr>
<tr>
<td>10</td>
<td>Identifying and Characterizing Domains of Transcription Regulatory Factors</td>
</tr>
<tr>
<td>11</td>
<td>DNA Binding by Regulatory Transcription Factors</td>
</tr>
<tr>
<td>12</td>
<td>Transcription and Preinitiation Complex Assembly In Vitro</td>
</tr>
<tr>
<td>13</td>
<td>Studying Chromatin Dynamics In Vitro: Chromatin Assembly, Remodeling, and Transcription</td>
</tr>
</tbody>
</table>

Appendix: Cautions
Index

Download copies of the figures from *Transcriptional Regulation in Eukaryotes* at www.cshteaching.org
Proteomics: A Cold Spring Harbor Laboratory Course Manual

By Andrew J. Link, Vanderbilt University School of Medicine, Nashville, Tennessee and Joshua LaBaer, Harvard University School of Medicine

Based on a popular course at Cold Spring Harbor Laboratory, this new manual assembles cutting-edge protocols, helpful hints, and lecture notes to teach researchers from a wide variety of disciplines the essential methods of proteomics using state-of-the-art instrumentation. Detailed protocols involving protein microarrays, liquid chromatography, high-throughput cloning of expression constructs, IMAC, mass spectrometry, MALDI–TOF, and MudPIT are provided, along with well-illustrated descriptions of experimental procedures and lists of recommended Web sites and reading material. Proteomics: A Cold Spring Harbor Laboratory Course Manual can be used both as the basis for a course and as a detailed bench manual for those performing indispensable proteomic experiments. It is authored by Andrew J. Link and Joshua LaBaer, both leaders in their fields, who bring complementary expertise to the manual.

2009, 228 pp., illus., appendices, index
Hardcover $154 £97
Paperback $96 £61

CONTENTS
Preface
Introduction
Experiments
1. Analysis of Whole-cell Lysates by Two-dimensional Gel Electrophoresis and MALDI Mass Spectrometry
2. Purification of Protein Complexes for Mass Spectrometry Analysis
3. Qualitative and Quantitative Measurement of Peptides with MALDI TOF/TOF Mass Spectrometry
4. Analysis of Protein Complexes: High-sensitivity Liquid Chromatography Coupled with Tandem Mass Spectrometry
5. Phosphopeptide Analysis Using IMAC and Mass Spectrometry
6. Multidimensional Protein Identification Technology (MudPIT) Analysis of Whole-cell Lysates
7. Quantitative Mass Spectrometry Analysis of Whole-cell Extracts (iTRAQ)
8. Analysis and Validation of Tandem Mass Spectra
9. High-throughput Cloning of ORFs: Assembling Large Sets of Expression Constructs
10. Construction of Protein Microarrays Nucleic Acid Programmable Protein Array (NAPPA)
11. Using the Nucleic Acid Programmable Protein Array (NAPPA) for Identifying Protein–Protein Interactions

Appendices
1. Setup and Demonstration of a Nanoelectrospray Ionization (nanoESI) Source and Tandem Mass Spectrometry (MS/MS)
2. Solution Protein Digest
3. In-gel Trypsin Digest of Gel Fractionated Proteins
4. Trichloroacetic Acid (TCA) Precipitation of Proteins
5. Monoisotopic and Immonium Ion Masses of Amino Acids
6. Dipeptide Masses of Amino Acids
7. LTQ Instrument Methods
8. Off-line Desalting of Peptide Mixtures
9. Preparing Competent Cells
10. DNA Quantification
11. Cautions
Index

www.cshlpublish.org
1-855-452-6793 C26
As molecular and cellular biologists move toward nano–techniques for performing experiments on single molecules rather than on populations of molecules, a comprehensive manual on how (and why) to carry out such experiments is needed. *Single-Molecule Techniques: A Laboratory Manual* fills this requirement—it is the first to take researchers who know nothing about single–molecule analyses to the point where they can successfully design and execute appropriate experiments. Geared toward research scientists in structural and molecular biology, biochemistry, and biophysics, the manual will be useful to all who are interested in observing, manipulating, and elucidating the molecular mechanisms and discrete properties of macromolecules. Techniques range from in vivo and in vitro fluorescent–based methods to the use of atomic force microscopy, optical and magnetic tweezers, and nanopores. The book is edited by Paul R. Selvin and Taekjip Ha, two pioneers in the field of experimental biophysics who have made significant contributions to the development and application of single–molecule technologies.

2008, 507 pp., illus., appendix, index
Paperback $169 £107
ISBN 978-0-879697-75-4

CONTENTS

Preface

1. The New Era of Biology In Singulo
*T. Ha and P.R. Selvin

IN VITRO FLUORESCENCE

2. Single-Molecule FRET with Total Internal Reflection Microscopy
*C. Joo and T. Ha

3. In Vitro and In Vivo FIONA and Other Acronyms for Watching Molecular Motors Walk
*P.R. Selvin, T. Lougheed, M.T. Hoffman, H. Park, H. Balci, B.H. Blehm, and E. Toprak

4. Colocalization of Fluorescent Probes: Accurate and Precise Registration with Nanometer Resolution
*L.S. Churchman and J.A. Spudich

5. Alternating-Laser Excitation of Single Molecules
*A.N. Kapanidis, M. Heilemann, E. Margeat, X. Kong, E. Nir, and S. Weiss

6. Orientation and Rotational Motions of Single Molecules by Polarized Total Internal Reflection Fluorescence Microscopy
*J.F. Beausang, Y. Sun, M.E. Quinlan, J.N. Forkey, and Y.E. Goldman

7. Imaging Gene Expression in Living Cells at the Single-Molecule Level
*J. Xiao, J. Elf, G.-W. Li, J. Yu, and X.S. Xie

8. Single-Virus Tracking in Live Cells
*M. Rust, M. Lakadamyali, B. Brandenburg, and X. Zhuang

9. Ultrasensitive Imaging in Live Cells Using Fluorescent Quantum Dots
*S. Courty and M. Dahan

10. Imaging Real-Time Gene Expression in Living Systems
*A.L. Wells, J.S. Condeelis, R.H. Singer, and D. Zenklusen

11. Single-Molecule Imaging of Stochastic Signaling Events in Living Cells
*S. Matsuoka, Y. Miyanaga, T. Yanagida, and M. Ueda

12. Fluorescence Correlation Spectroscopy In Vitro and In Vivo
*E. Haustein and P. Schwille

OPTICAL TRAPS

13. Optical Traps to Study Properties of Molecular Motors
*J.A. Spudich, S.E. Rice, R.S. Rock, T.J. Purcell, and H.M. Warrick

14. High-Resolution Dual-Trap Optical Tweezers with Differential Detection, C. Bustamante, Y.R. Chemla, and J.R. Moffitt

15. Imaging and Nanomanipulation of an Actomyosin Motor
*S. Nishikawa, T. Komori, T. Ariga, T. Okada, M. Morimatsu, Y. Ishii, and T. Yanagida

MAGNETIC TRAPS

continued
Single-Molecule Techniques
A Laboratory Manual

FORCE PROBES/ATOMIC FORCE MICROSCOPY
17. Probing Polysaccharide and Protein Mechanics by Atomic Force Microscopy
 M. Rabbi and P.E. Marszalek

CHANNELS
 M. Wanunu and A. Meller

OTHER TECHNIQUES
 A.R. Dunn and J.A. Spudich

20. Advances in Surface-based Assays for Single Molecules
 P.M. Fordyce, M.T. Valentine, and S.M. Block

 C.M. Schroeder, P.C. Blainey, S. Kim, and X.S. Xie

APPENDIX: Cautions
Index
Genetic Variation
A Laboratory Manual

Genetic Variation: A Laboratory Manual is the first compendium of protocols specifically geared towards genetic variation studies, and includes thorough discussions on their applications for human and model organism studies. Intended for graduate students and professional scientists in clinical and research settings, it covers the complete spectrum of genetic variation—from SNPs and microsatellites to more complex DNA alterations, including copy number variation. Written and edited by leading scientists in the field, the early sections of the manual are devoted to study design and generating genotype data, the use of resources such as HapMap and dbSNP, as well as experimental, statistical, and bioinformatic approaches for analyzing the data. The final sections include descriptions of genetic variation in model organisms and discussions of recent insights into human genetic ancestry, forensics, and human variation.

2007, 472 pp., illus., appendix, index
Paperback $165 £104 ISBN 978-0-87969-780-8

CONTENTS

1. Ethical Issues in Human Genetic Research:
The Global Experience
K. Arnold and J. van der Walt

SECTION 1: STUDY DESIGN

Introduction
2. Population Choice as a Consideration for
Genetic Analysis Study Design
J.C. Stephens and M. Bamshad
3. Power Calculations
D.M. Evans and S. Purcell
4. Genetic Analysis: Moving between Linkage and Association
A.V. Smith
5. NCBI dbSNP Database: Content and Searching
M.L. Frolo and S.T. Sherer
6. Using the HapMap Web Site
A.V. Smith

SECTION 2: LABORATORY PROTOCOLS

Introduction
7. Isolation of Plant DNA for Genotyping Analysis
N.M. Springer
8. Preparing RNA from Plant Tissues
A.-P. Hsia, H.D. Chen, K. Ohtsu, and P.S. Schnable
9. Preparing DNA from Mammalian Sources
A. Sahota, A.J. Brooks, and J.A. Tischfield

PART 2: SNP VARIATION ANALYSIS

10. Intermediate-Throughput Laboratory-Scale Genotyping Solutions
S.J. Macdonald
11. Intermediate-Throughput Laboratory-Scale Genotyping Protocols
12. Molecular Inversion Probes and Universal Tag Arrays: Application to Highplex Targeted SNP Genotyping
G. Karlin-Neumann, M. Sedova, R. Sapolsky, J. Forman, Y. Wang, M. Moorhead, and M. Faham
13. Whole-Genome Genotyping
S.B. Gabriel and M.P. Weiner

PART 3: COPY NUMBER AND COMPLEX VARIATION ANALYSIS

14. Comparative Genomic Hybridization to Detect Variation in the Copy Number of Large DNA Segments
I.N. Holcomb and B.J. Trask
15. Representational Oligonucleotide Microarray Analysis Detection of Genetic Variation
R. Lucito
16. Whole-Genome Sampling Analysis to Detect Copy Number Changes in FFPE Samples
S. Jacobs
17. Molecular Inversion Probe Targeted Genotyping: Application to Copy Number Determination
G. Karlin-Neumann, M. Sedova, R. Sapolsky, S. Lin, Y. Wang, M. Moorhead, and M. Faham
18. Microsatellite Markers for Linkage and Association Studies
J. Gulcher

SECTION 3: DATA ANALYSIS

Introduction
19. Considerations for SNP Selection
C. Carlson
20. Selection and Evaluation of tag-SNPs Using Tagger and HapMap
P. de Bakker
21. Haploview: Visualization and Analysis of SNP Genotype Data
J.C. Barrett
22. Considerations for Copy Number Analysis of FFPE Samples
S. Jacobs
23. Assessing Significance in Genetic Association Studies
M.J. Daly

continued
24. Assessing Human Variation Data for Signatures of Natural Selection
 M. Bamshad and J.C. Stephens

SECTION 4: VARIATION STUDIES IN MODEL ORGANISMS

Introduction
25. Arabidopsis
 Y. Li and J.O. Borevitz
26. Maize
 W.B. Barbazuk, A.-P. Hsia, H.D. Chen, Y. Fu, K. Ohtsu, and P.S. Schnable
27. Rice
 H. Leung, K.L. McNally, and D. Mackill
28. The Mouse
 C.M. Wade and M.J. Daly
29. The Rat
 E. Cuppen, N. Hübner, H.J. Jacob, and A.E. Kwitek
30. The Cat
 M.J. Lipinski, N. Billings, L.A. Lyons
31. The Dog
 K. Lindblad-Toh and E.A. Ostrander
32. The Chimpanzee
 T.S. Mikkelsen, M.C. Zody, and K. Lindblad-Toh

SECTION 5: INSIGHTS INTO HUMAN VARIATION

Introduction
33. Genealogical Markers: mtDNA and the Y Chromosome
 M. Stoneking and M. Kayser
34. Forensic DNA Testing
 J.M. Butler
35. The Human Genome: What Lies Ahead
 M.P. Weiner and J.C. Stephens

APPENDIX: Cautions
INDEX
Gene Transfer: Delivery and Expression of DNA and RNA
A Laboratory Manual

Edited by Theodore Friedmann, University of California, San Diego and John Rossi, Beckman Research Institute of the City of Hope, Duarte, California

Understanding gene function and regulation requires rigorous testing in live cells and organisms. Recent advances have provided a variety of new strategies for delivering DNA and RNA into cells and probing their expression, as well as new clinical applications that rely upon the introduction of genetic material. The vast number of available techniques for clinical and laboratory research often makes selecting the optimal method a difficult process. Gene Transfer: Delivery and Expression of DNA and RNA provides the first comprehensive guide to technical approaches for delivering nucleic acids into cells and organisms and of ensuring (even manipulating) appropriate expression. The detailed, step-by-step protocols cover a variety of methods, both well established and newly evolving. These include viral and nonviral methods of gene delivery, transgenic approaches, strategies for the regulation of transgene expression, and modification of the host response. The introductory matter to each chapter includes concise technical and theoretical discussions with considerations for selection of the appropriate system and strategies for delivery.

2007, 793 pp., illus., appendix, index
Paperback $167 £26
Hardcover $263 £42

ISBN 978-087969764-8

CONTENTS

1. Introduction
 T. Friedmann and J. Rossi

VIRAL VECTORS

2. Retroviral Vectors
 K. Cornetta, K.E. Pollok, and A.D. Miller

3. Development of Lentiviral Vectors
 Expressing sRNA
 G. Tiscornia, O. Singer, and I.M. Verma

4. HIV–2 Vectors in Human Gene Therapy:
 Design, Construction, and Therapeutic
 Potential
 K.V. Morris and F. Wong–Staal

5. SIV Vectors as Vehicles for DNA Delivery
 E. Verhoeyen, F.–L. Cosset, and D. Nègre

6. Production and Use of Feline
 Immunodeficiency Virus–based Lentiviral
 Vectors
 D.T. Saenz, R. Barraza, N. Loewen, W. Teo, and E.M. Poeschla

7. Lentivirus Transduction of Hematopoietic
 Cells
 M.–J. Li and J.J. Rossi

8. Spleen Necrosis Virus–based Vectors
 Z. Parveen, M. Mukhtar, and R.J. Pomerantz

9. Foamy Virus Vector Production and
 Transduction of Hematopoietic Cells
 N.C. Josephson and D.W. Russell

10. Simian Foamy Virus Type–1 Vectors
 J. Park and A. Mergia

 Retroviral Vectors
 J.–K. Yee

12. Targeted Gene Transfer with Surface–engineered
 Lentiviral Vectors
 E. Verhoeyen and F.–L. Cosset

13. Preparation of Pseudotyped Lentiviral
 Vectors Resistant to Inactivation by Serum
 Complement
 G.H. Guibinga and T. Friedmann

14. Generation of 2A Peptide–linked
 Multicistronic Vectors
 A.L. Szymczak–Workman, K.M. Vignali, and
 D.A.A. Vignali

15. Construction of First–generation Adenoviral
 Vectors
 P. J. Ross and R.J. Parks

16. Production and Characterization of
 Helper–dependent Adenoviral Vectors
 D.J. Palmer and P. Ng

17. Cell and Tissue Targeting
 Y. Kawakami and D.T. Curiel

18. Stable Producer Cell Lines for AAV
 Assembly
 G. Chaden and A. Salvetti

19. Strategies for the Design of Hybrid
 Adeno–associated Virus Vectors
 A. Asokan and R.J. Samulski

20. Recombinant Herpes Simplex Virus Vectors
 W.F. Goins, D. M. Krisky, J.B. Wechuck,
 D. Wolfe, S. Huang, and J.C. Glorioso

21. Herpes Simplex Virus Type–1–derived
 Amplicon Vectors
 W.J. Bowers and H.J. Federoff

22. γ–2 Herpesvirus Saimiri–based Vectors
 A. Whitehouse

23. Gene Delivery Using HSV/AAV Hybrid
 Amplicon Vectors
 O. Saydam, D.L. Glauser, and C. Fraefel

24. Polyomaviruses: SV40
 D.S. Strayer, C. Mitchell, D.A. Maier, and
 C.N. Nichols

25. SV40 In Vitro Packaging: A Pseudovirion
 Gene Delivery System
 C. Kimchi–Sarfaty and M.M. Gotteeman

continued
Gene Transfer
Delivery and Expression of DNA and RNA
A Laboratory Manual

26. Baculovirus–based Display and Gene Delivery Systems
 A.R. Mäkelä, W. Erns, R. Grabbers, and C. Oker–Blom

27. Safe, Simple, and High–capacity Gene Delivery into Insect and Vertebrate Cells by Recombinant Baculoviruses

28. Alphaviruses: Semliki Forest Virus and Sindbis Virus as Gene Delivery Vectors
 K. Lundstrom

29. Gene Transfer into Mammalian Cells Using Targeted Filamentous Bacteriophage
 A. Baird

30. Selection, Isolation, and Identification of Targeting Peptides for Ligand–directed Gene Delivery
 M. Trepel, W. Arap, and R. Pasqualini

31. Rescue and Propagation of Tropism–modified Measles Viruses
 T. Nakamura and S.J. Russell

32. Picornavirus–based Expression Vectors
 S. Mueller and E. Wimmer

33. Reverse Genetics of Influenza Viruses
 G.A. Marsh and P. Palese

34. An Overview of Condensing and Noncondensing Polymeric Systems for Gene Delivery
 D.B. Shenoy and M.M. Amiji

35. Transfection of Hippocampal Neurons with Plasmid DNA Using Calcium Phosphate Coprecipitation
 B. Goetze and M. Kiebler

36. Gene Delivery to Skin Using Biolistics
 W.C. Heiser

37. Optimizing Electrotransfection of Mammalian Cells In Vitro
 T. Shimogori

38. Micro In Utero Electroporation for Efficient Gene Targeting in Mouse Embryos
 T. Shimogori

39. Lipoplex and LPD Nanoparticles for In Vivo Gene Delivery
 S.–D. Li, S. Li, and L. Huang

40. Bioreponsive Targeted Charge Neutral Lipid Vesicles for Systemic Gene Delivery
 W. Li and F.C. Szoka, Jr.

41. HVJ Liposomes and HVJ Envelope Vectors
 Y. Kaneda

42. Polylysine Copolymers for Gene Delivery
 S.W. Kim

43. PEI Nanoparticles for Targeted Gene Delivery
 F. Alexis, J. Zeng, and S. Wang

44. Polylysine–containing Polycations for Nucleic Acid Delivery
 J.D. Heidel

45. Bionanocapsules Using the Hepatitis B Virus Envelope I Protein

46. Formulations of Solid Lipid Nanoparticles for Transfection of Mammalian Cells In Vitro
 C. Rudolph and J. Rosemecker

47. PEGylated Poly–l–lysine DNA Nanoparticles
 P.B. Davis and T.H. Kowalczyk

48. Water–soluble Lipopolymers and Lipopeptides for Nucleic Acid Delivery
 R.I. Mahato, Z. Ye, and S.W. Kim

49. Cationic Polysaccharides for DNA Delivery
 I. Yudovin–Farber, H. Eliyahu, and A.J. Domb

50. Sustained Release of Plasmid DNAs Encoding Platelet–derived Growth Factor and Hyaluronan Synthase 2 from Cross–linked Hyaluronan Matrices and Films
 W. Chen

51. Linear Polyethylenimine: Synthesis and Transfection Procedures for In Vitro and In Vivo
 M. Ogris and E. Wagner

52. Protein Nanospheres for Gene Delivery
 J.K. Vasir and V. Labhasetwar

53. Formulations of Solid Lipid Nanoparticles
 R.T. Hillman and M.P. Calos

54. High–throughput Methods for Screening Polymeric Transfection Reagents
 G.T. Zaugates, D.G. Anderson, and R. Langer

55. Poly(Lactic Acid) and Poly(Ethylene Oxide) Nanoparticles as Carriers for Gene Delivery
 N. S. Caba, A. Sanchez, and M. J. Alonso

56. Biodegradable Nanoparticles
 J.K. Vasir and V. Labhasetwar

57. Transposon–mediated Delivery of Small Interfering RNA: Sleeping Beauty Transposon
 B.S. Fletcher

58. Efficient DNA Delivery into Mammalian Cells by Displaying the TAT Transduction Domain on Bacteriophage
 J. Wadia, A. Egechi, and S.F. Dowdy

 P. Lundberg, K. Kilk, and U. Langel

REGULATION OF TRANSGENE EXPRESSION

60. Conditional Mutagenesis of the Genome Using Site–specific DNA Recombination
 K. Ohtsubo and J.D. Marth

61. Expression and Validation of Ribozyme and Short Hairpin RNA in Mammalian Cells
 M. Amaragvuini

62. Mifepristone–inducible Gene Regulatory System
 K. Schilling, X. Ye, S. Tsai, and B.W. O'Malley

63. Dimerizer–mediated Regulation of Gene Expression
 V.M. Rivera, L. Berk, and T. Clackson

64. RheoSwitch System: A Highly Sensitive Ecdysone Receptor–based Gene Regulation System Induced by Synthetic Small–molecule Ligands
 P. Kumar and A. Katakam

65. Site–specific Integration with Phage C31 Integrase
 R.T. Hillman and M.P. Calos

66. Creating Zinc Finger Nucleases to Manipulate the Genome in a Site–specific Manner Using a Modular–assembly Approach
 M. Porteus

SPECIALIZED TECHNIQUES OF GENE AND VECTOR DELIVERY

67. Assembly of De Novo Bacterial Artificial Chromosome–based Human Artificial Chromosomes
 J. Basu and H.F. Willard

continued
Gene Transfer
Delivery and Expression of DNA and RNA
A Laboratory Manual

68. Delivery of Naked DNA Using Hydrodynamic Injection Techniques
 D.L. Lewis, M. Noble, J. Hegge, and J. Wolff

69. Nonviral Gene Transfer across the Blood–brain Barrier with Trojan Horse Liposomes
 W. M. Pardridge

70. Sonoporation: An Efficient Technique for the Introduction of Genes into Chick Embryos
 S. Ohta, O. Yukiko, K. Suzuki, M. Kamimura, K. Tachibana, and G. Yamada

71. Genetic Manipulation of Mammalian Cells by Microinjection
 D.W. Rose

72. Magnetofection
 C. Plank and J. Rosenecker

73. Photochemical Internalization for Light-directed Gene Delivery
 A. Bonsted, A. Høgset, E. Wagner, and K. Berg

74. Pronuclear Microinjection in Mice
 W. Tsark

75. Knockdown Transgenic Mice Generated by Silencing Lentiviral Vectors
 O. Singer, G. Tiscornia, and I.M. Verma

APPENDIX
Cautions
Subject Index

TRANSGENIC APPROACHES
Basic Methods in Microscopy
Protocols and Concepts from Cells
A Laboratory Manual

By David L. Spector, Cold Spring Harbor Laboratory, and Robert D. Goldman, Northwestern University Medical School, Chicago

Imaging has become a vital tool for researchers in all aspects of biology. Recent advances in microscope technology, labeling techniques and gene and protein manipulation methods have led to breakthroughs in our understanding of biological processes. In order to take advantage of these techniques, biologists need to understand the fundamental techniques of microscopy. The methods found here, drawn from the popular laboratory standard manuals Cells: A Laboratory Manual and Live Cell Imaging provide a solid course in the basics of using the microscope in a biology laboratory.

Basic Methods in Microscopy provides an essential guide to light microscopy, fluorescence microscopy, confocal microscopy, multiphoton microscopy and electron microscopy, preparation of tissues and cells, labeling of specimens and analysis of cellular events.

This manual is an important tool for any biology researcher employing imaging as a research method.

2006, 382 pp., illus., index
Paperback $97 £61
ISBN 978-0-879697-51-8

CONTENTS
Preface
1. Light Microscopy
2. Confocal Microscopy, Deconvolution, and Structured Illumination Methods
3. Multiphoton and Multispectral Laser-scanning Microscopy
4. Preparation of Cells and Tissues for Fluorescence Microscopy
5. Nonimmunological Fluorescent Labeling of Cellular Structures
6. Introduction to Immunofluorescence Microscopy
7. Immunostaining of Microtubules, Microtubule-associated Proteins, and Intermediate Filaments
8. Immunofluorescence Localization of Actin
9. Immunofluorescence Localization of Nuclear Proteins
10. Immunofluorescence Methods for Saccharomyces cerevisiae
11. Immunofluorescence Methods for Drosophila Tissues
12. Immunofluorescence Methods for Caenorhabditis elegans
13. Analyzing DNA Replication: Nonisotopic Labeling
15. Fluorescence In Situ Hybridization to DNA
16. Whole-Mount Fluorescence In Situ Hybridization to Drosophila Chromosomal DNA
17. In Situ Hybridization to RNA
18. Whole-Mount In Situ Detection of RNAs in Vertebrate Embryos and Isolated Organs
20. Preparative Methods for Transmission Electron Microscopy
21. Immunoelectron Microscopy

Appendix 1. Microscopy: Lenses, Filters, and Emission/Excitation Spectra
Appendix 2. Cautions
Index
“Methods in Yeast Genetics” is a course that has been offered annually at Cold Spring Harbor Laboratory for the last 30 years. This is an updated edition of the course manual, which provides a set of teaching experiments, along with protocols and recipes for the standard techniques and reagents used in the study of yeast biology. Since the last edition of the manual was published (2000), revolutionary advances in genomics and proteomics technologies have had a significant impact on the field. This updated edition reflects these advances, and also includes new techniques involving vital staining, visualization of green fluorescent protein, new drug resistance markers, high-copy suppression, tandem affinity protein tag protein purification, gene disruption by double-fusion polymerase chain reaction, and many other recent developments.

2005, 230 pp., illus.
Paperback $96 £61
ISBN 978-0-879697-28-0

CONTENTS

EXPERIMENTS
I. Looking at Yeast Cells
II. Isolation and Characterization of Auxotrophic, Temperature-sensitive, and Osmotic-sensitive Mutants
III. Meiotic Mapping
IV. Mitotic Recombination and Random Spore Analysis
V. Transformation of Yeast
VI. Synthetic Lethal Mutants
VII. Gene Replacement
VIII. Isolation of ras2 Suppressors
IX. Manipulating Cell Types
X. Isolating Mutants by Insertional Mutagenesis
XI. Isolation of Separation of Function Mutants by Two-hybrid Differential Interaction Screening

TECHNIQUES AND PROTOCOLS
1. High-efficiency Transformation of Yeast
2. “Quick and Dirty” Plasmid Transformation of Yeast Colonies
3. Yeast DNA Isolations
 A. Yeast DNA Miniprep (40 ml)
 B. Yeast DNA Miniprep (5 ml)
 C. A Ten-minute DNA Preparation from Yeast
 D. Yeast Genomic DNA: Glass-bead Preparation
4. Yeast Protein Extracts
5. TAP Purification
6. Yeast RNA Isolations
7. Hydroxylamine Mutagenesis of Plasmid DNA
8. Assay of β-Galactosidase in Yeast
9. Plate Assay for Carboxypeptidase Y
10. Random Spore Analysis
11. Yeast Vital Stains
 A. DAPI Stain of Nuclear and Mitochondrial DNA
 B. Visualizing Mitochondria with DiOC₆ or DiIC₅(3)
 C. Visualizing Vacuoles and Endocytic Compartments with FM4-64
 D. Calcofluor Staining of Chitin and Bud Scars
12. Yeast Immunofluorescence
13. Actin Staining in Fixed Cells
14. PCR-mediated Gene Disruption
 A. One-step PCR Gene Disruption
 B. Gene Disruption by Double-fusion PCR
15. Yeast Colony PCR
16. Measuring Yeast Cell Density by Spectrophotometry
17. Cell Synchrony
18. Chromatin Immunoprecipitation
19. Flow Cytometry of Yeast DNA
20. Logarithmic Growth
21. EMS Mutagenesis
22. Tetrad Dissection
23. Making a Tetrad Dissection Needle
24. Picking Zygotes
25. Determining Plating Efficiency
26. DNA Miniprep from E. coli
27. Preparing and Transforming Competent E. coli
28. Storing and Handling of the Systematic Deletion Collection

APPENDICES
Drosophila Protocols

By William Sullivan, University of California, Santa Cruz, Michael Ashburner, University of Cambridge, and R. Scott Hawley, University of California, Davis

This exceptional laboratory manual describes thirty-seven procedures most likely to be used in the next decade for molecular, biochemical, and cellular studies on Drosophila. They were selected after extensive consultation with the research community and rigorously edited for clarity, uniformity, and conciseness.

The outstanding features of this protocol collection are:

Scope: The methods included permit investigation of chromosomes, cell biology, molecular biology, genomes, biochemistry, and development.

Depth: Each protocol includes the basic information needed by novices, with sufficient detail to be valuable to experienced investigators.

Format: Each method is carefully introduced and illustrated with figures, tables, illustrations, and examples of the data obtainable.

Added value: The book's appendices include key aspects of Drosophila biology, essential solutions, buffers, and recipes.

An evolution of Michael Ashburner's 1989 classic Drosophila: A Laboratory Manual, this book is an essential addition to the personal library of Drosophila investigators and an incomparable resource for other research groups with goals likely to require fly-based technical approaches.

2000, 728 pp., illus., appendices, index
Paperback $81 £51

CONTENTS

Preface
Abbreviations

CHROMOSOMES

1: Preparation and Analysis of Drosophila Mitotic Chromosomes
S. Pimpinelli, S. Bonaccorsi, L. Fanti, and M. Gatti

2: In Situ Hybridization to Somatic Chromosomes
A.F. Dernburg

3: BrdU Labeling of Chromosomes
A.W. Shermoen

4: Analysis of Meiosis of Fixed and Live Oocytes by Light Microscopy
H.J.G. Matthies, M. Clarkson, R.B. Saint, R. Namba, and R.S. Hawley

5: Cytological Analysis of Spermatocyte Growth and Male Meiosis in Drosophila melanogaster
S. Bonaccorsi, M.G. Giansanti, G. Cenci, and M. Gatti

6: Preparation and Analysis of Polytene Chromosomes
J.A. Kennison

7: In Situ Hybridization to Polytene Chromosomes
M.-L. Pardue

8: Mapping Protein Distributions on Polytene Chromosomes by Immunostaining
R. Paro

CELL BIOLOGY

9: Fluorescent Analysis of Drosophila Embryos
W.F. Rothwell and W. Sullivan

10: Imaginal Discs
S.S. Blair

continued
INDEX (Subject Areas)

Biochemistry
Antibodies, 2nd ed.
Calcium Techniques
Live Cell Imaging, 2nd ed.
Molecular Cloning, 4th ed.
Purifying and Culturing Neural Cells
Single-Molecule Techniques
Transcriptional Regulation in Eukaryotes, 2nd Ed.

Biophysics
Live Cell Imaging, 2nd ed.
Single-Molecule Techniques
Transcriptional Regulation in Eukaryotes, 2nd ed.

Biotechnology
Antibodies, 2nd ed.
Live Cell Imaging, 2nd ed.
Manipulating the Mouse Embryo, 4th ed.
Molecular Cloning, 4th ed.

Cancer and Oncogenes
Mouse Models of Cancer

Cell Biology
Basic Methods in Microscopy
Calcium Techniques
Gene Transfer
Imaging in Developmental Biology
Imaging in Neuroscience
Live Cell Imaging, 2nd ed.
Mouse Hematology
Purifying and Culturing Neural Cells
RNA
Single-Molecule Techniques

Developmental Biology
Drosophila Neurobiology
Drosophila Protocols
Gene Transfer

Imaging in Developmental Biology
Manipulating the Mouse Embryo, 4th ed.
Mouse Models of Cancer

Drosophila melanogaster
Drosophila Neurobiology
Drosophila Protocols

Evolution
Genetic Variation

Gene Therapy
Gene Transfer

Genetics and Genome Science
Genetics of Complex Human Diseases
Gene Transfer
Methods in Yeast Genetics, 2005
RNA
Transcriptional Regulation in Eukaryotes, 2nd ed.

Human Biology & Disease
Genetics of Complex Human Diseases
Gene Transfer

Immunology, Vaccines, and Therapeutic Proteins
Mouse Hematology

Medical Science
Gene Transfer

Microscopy and Imaging
Basic Methods in Microscopy
Imaging
Imaging in Developmental Biology
Imaging in Neuroscience
Live Cell Imaging, 2nd ed.

Molecular Biology
Antibodies, 2nd ed.
Gene Transfer

continued
INDEX (Subject Areas)

Manipulating the Mouse Embryo, 4th ed.
Molecular Cloning, 4th ed.
Mouse Models of Cancer
RNA
Single-Molecule Techniques
Transcriptional Regulation in Eukaryotes, 2nd ed.

Mouse Biology
Manipulating the Mouse Embryo, 4th ed.
Mouse Hematology
Mouse Models of Cancer

Neurobiology
Basic Methods in Microscopy
Drosophila Neurobiology

Imaging in Neuroscience
Purifying and Culturing Neural Cells

Proteins and Proteomics
Mouse Hematology
Proteomics

Structural Biology
Single-Molecule Techniques

Yeast
Methods in Yeast Genetics, 2005
TO ORDER CSHL PRESS BOOKS:

Visit: www.cshlpress.org
E-mail: orders@cshl.edu
Call: 1-855-452-6793

Cold Spring Harbor Laboratory Press now outsources book order processing and warehouse operations to Oxford University Press (OUP) in Cary, NC. Billing and shipping will originate from OUP.

FOR INFORMATION REGARDING CSHL JOURNAL SUBSCRIPTIONS:

Visit: www.cshlpress.org
E-mail: cshpress@cshl.edu
Call: 1-800-843-4388 or 516-422-4100
Write: CSHL Press
 500 Sunnyside Boulevard
 Woodbury, NY 11797-2924

Support Research and Save on Books—Join Our Discount Program!

Did you know that buying directly from CSHL Press enables you to save money on any title we publish? As a member of our Discount Program, you will enjoy prices that are frequently lower than those of any other online book site.

Program benefits for individuals include:

• A 10% discount, in addition to other promotional discounts, on all web orders (individuals only)
• Free shipping to US & Canada
• Advance notice of new publications
• Exclusive special offers and online prices.

Regardless of where you make your purchase, all revenue from sales of CSHL Press publications supports research at Cold Spring Harbor Laboratory.