TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>New Books</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies (A1)</td>
<td></td>
</tr>
<tr>
<td>/ A Laboratory Manual, Second Edition</td>
<td></td>
</tr>
<tr>
<td>Manipulating the Mouse Embryo (A2)</td>
<td></td>
</tr>
<tr>
<td>/ A Laboratory Manual, Fourth Edition</td>
<td></td>
</tr>
<tr>
<td>Calcium Techniques (A4)</td>
<td></td>
</tr>
<tr>
<td>/ A Laboratory Manual</td>
<td></td>
</tr>
<tr>
<td>Purifying and Culturing Neural Cells (A6)</td>
<td></td>
</tr>
<tr>
<td>/ A Laboratory Manual</td>
<td></td>
</tr>
<tr>
<td>Mouse Models of Cancer (A7)</td>
<td></td>
</tr>
<tr>
<td>/ A Laboratory Manual</td>
<td></td>
</tr>
<tr>
<td>Molecular Cloning (A9)</td>
<td></td>
</tr>
<tr>
<td>/ A Laboratory Manual, Fourth Edition</td>
<td></td>
</tr>
<tr>
<td>The Biology of Plants (Symposium 77) (A10)</td>
<td></td>
</tr>
<tr>
<td>Genome Science (A12)</td>
<td></td>
</tr>
<tr>
<td>Lab Math, Second Edition (A13)</td>
<td></td>
</tr>
<tr>
<td>Introduction to Protein-DNA Interactions (A14)</td>
<td></td>
</tr>
<tr>
<td>Next-Generation DNA Sequencing Informatics (A15)</td>
<td></td>
</tr>
<tr>
<td>Mammalian Development (A16)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal Transduction (A18)</td>
<td></td>
</tr>
<tr>
<td>Blue Skies and Bench Space (A20)</td>
<td></td>
</tr>
<tr>
<td>The Dawn of Human Genetics (A21)</td>
<td></td>
</tr>
<tr>
<td>Bacterial Pathogenesis (A23)</td>
<td></td>
</tr>
<tr>
<td>Cell Survival and Cell Death (A24)</td>
<td></td>
</tr>
<tr>
<td>Cystic Fibrosis (A25)</td>
<td></td>
</tr>
<tr>
<td>DNA Repair, Mutagenesis, and Other Responses to DNA Damage (A26)</td>
<td></td>
</tr>
<tr>
<td>DNA Replication (A27)</td>
<td></td>
</tr>
<tr>
<td>The Endoplasmic Reticulum (A29)</td>
<td></td>
</tr>
<tr>
<td>Hemoglobin and Its Diseases (A30)</td>
<td></td>
</tr>
<tr>
<td>Immune Tolerance (A32)</td>
<td></td>
</tr>
<tr>
<td>Mitochondria (A33)</td>
<td></td>
</tr>
<tr>
<td>Signaling by Receptor Tyrosine Kinases (A34)</td>
<td></td>
</tr>
<tr>
<td>Transplantation (A36)</td>
<td></td>
</tr>
<tr>
<td>Index (Subject Areas)</td>
<td></td>
</tr>
</tbody>
</table>

Price changes and sale prices on selected titles may not be reflected in this catalog. Please visit our website for current pricing www.cshlpress.org. Please visit our Sale Shelf for special discounts on selected items.
Antibodies
A Laboratory Manual, Second Edition

Edited by Edward A. Greenfield, Dana-Farber Cancer Institute

This second edition of the now-classic lab manual Antibodies, by Harlow and Lane, has been revised, extended, and updated by Edward Greenfield of the Dana-Farber Cancer Center, with contributions from other leaders in the field. This manual continues to be an essential resource for molecular biology, immunology, and cell culture labs on all matters relating to antibodies. The chapters on hybridomas and monoclonal antibodies have been recast with extensive new information and there are additional chapters on characterizing antibodies, antibody engineering, and flow cytometry. As in the original book, the emphasis in this second edition is on providing clear and authoritative protocols with sufficient background information and troubleshooting advice for the novice as well as the experienced investigator.

2013, 847 pp., illus., appendices, index

CONTENTS
Preface

1 Antibody Production by the Immune System
 Stefanie Sarantopoulos
2 The Antibody Molecule
 Stefanie Sarantopoulos
3 Antibody-Antigen Interactions
 Stefanie Sarantopoulos
4 Antibody Responses
 Stefanie Sarantopoulos
5 Selecting the Antigen
 Edward A. Greenfield, James DeCaprio, and Mohan Brahmanadam
6 Immunizing Animals
 Edward A. Greenfield
7 Generating Monoclonal Antibodies
 Edward A. Greenfield
8 Growing Hybridomas
 Edward A. Greenfield
9 Characterizing Antibodies
 Frances Wei-Garcia and Robert H. Carnahan
10 Antibody Purification and Storage
 Jordan B. Fishman and Eric A. Berg

11 Engineering Antibodies
 James Dasch and Amy Dasch
12 Labeling Antibodies
 Eric A. Berg and Jordan B. Fishman
13 Immunoblotting
 Larisa Litovchick
14 Immunoprecipitation
 James DeCaprio and Thomas O. Kohl
15 Immunoassays
 Thomas O. Kohl and Carl A. Ascoli
16 Cell Staining
 Scott J. Rodig
17 Antibody Screening using High Throughput Flow Cytometry
 Thomas D.l. Duensing and Susan R. Watson

Appendix I: Electrophoresis
Appendix II: Protein Techniques
Appendix III: General Information
Appendix IV: Bacterial Expression
Appendix V: Cautions
Index
Manipulating the Mouse Embryo
A Laboratory Manual, Fourth Edition

By Richard Behringer, University of Texas, M.D. Anderson Cancer Centre, Marina Gertsenstein, Toronto Centre for Phenogenomics, Transgenic Core and Specialty Resources, Kristina Nagy, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, and Andras Nagy, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto

The fourth edition of the “Mouse Manual”—Manipulating the Mouse Embryo—appears 28 years after the first edition and once again is the definitive reference source on mouse development, transgenesis techniques, and molecular biology. Authors Richard Behringer, Marina Gertsenstein, Kristina Nagy, and Andras Nagy—pre-eminent leaders in their fields—have reorganized and updated this edition to include new information and protocols on:

- assisted reproduction techniques for sperm and embryo cryopreservation
- generation of induced pluripotent stem cells
- isolation, generation, and transplantation of spermatogonial stem cell lines
- in utero electroporation of gene constructs into post-implantation embryos
- vibratome sectioning of live and fixed tissues for imaging thick tissue sections
- whole-mount fluorescent staining methods for three-dimensional visualization.

Techniques regarding recombinant DNA technology and mouse embryonic development from the previous editions have been updated and recast, as has the wealth of information on mouse laboratory strains, mouse housing and breeding, surgical procedures, assisted reproduction, handling of embryos, and micromanipulation setups. The first edition of Manipulating the Mouse Embryo appeared in 1986 as an outgrowth of Cold Spring Harbor Laboratory courses on the molecular embryology of the mouse held in the early 1980s, and authors of the first two editions included Brigid Hogan, Rosa Beddington, Frank Costantini, and Liz Lacy. Mouse embryo manipulation techniques have developed exponentially since the first edition, but then, as now, Manipulating the Mouse Embryo remains the essential practical and theoretical guide for anyone working with mice—students, lab technicians, and investigators.

Due November 2013, 850 pp. (approx.), illus., index
Hardcover $240 £150
Paperback $165 £104
ISBN 978-1-936113-00-2

CONTENTS (preliminary)
Chapter 1 Genetics and Embryology of the Mouse: Past, Present, and Future
Chapter 2 Summary of Mouse Development
Chapter 3 A Mouse Colony for the Production of Transgenic and Chimeric Animals
Chapter 4 Recovery and In Vitro Culture of Preimplantation Embryos
Chapter 5 Isolation, Culture, and Manipulation of Postimplantation Embryos
Chapter 6 Surgical Procedures
Chapter 7 Production of Transgenic Mice by Pronuclear Microinjection
Chapter 8 Embryo-derived Stem Cell Lines
Chapter 9 Germ Line–Competent Stem Cells Derived from Adult Mice
Chapter 10 Vector Designs for Pluripotent Stem Cell-based Transgenesis and Genome Alterations
Chapter 11 Introduction of Foreign DNA into Embryonic Stem Cells
Chapter 12 Production of Chimeras

continued
Manipulating the Mouse Embryo
A Laboratory Manual, Fourth Edition

Chapter 13 Genotyping
Chapter 14 Parthenogenesis, Pronuclear Transfer, and Mouse Cloning
Chapter 15 Assisted Reproduction: Ovary Transplantation, In Vitro Fertilization, Artificial Insemination, and Intracytoplasmic Sperm Injection
Chapter 16 Cryopreservation, Rederivation, and Transport of Mouse Strains
Chapter 17 Techniques for Visualizing Gene Products, Cells, Tissues, and Organ Systems
Chapter 18 Setting Up a Micromanipulation Lab
Appendices:
Buffers & Solutions
Web Resources
Cautions
Calcium Techniques
A Laboratory Manual

Edited by Jan B. Parys, University of Leuven, Martin Bootman, The Babraham Institute, David I. Yule, University of Rochester, and Geert Bultynck, University of Leuven

Life begins with a surge of calcium ions (Ca2+) at fertilization, and thereafter, Ca2+ signaling influences nearly every aspect of mammalian development and physiology, from gene expression and cell proliferation to muscle contraction and nerve impulses. To create spatiotemporally distinct Ca2+ signals, cells use a variety of mechanisms to recognize, transport, and buffer Ca2+. Thus, a diverse range of reliable experimental techniques is necessary to study the movement of Ca2+ and the various effectors involved.

This laboratory manual provides step-by-step protocols for studying many facets of Ca2+ signaling, as well as background information on the principles and applications of the techniques. Contributors discuss how to use fluorescent, luminescent, and genetically encoded Ca2+ probes in conjunction with state-of-the-art imaging modalities to characterize Ca2+ signals. Electrophysiological measurements of Ca2+ channel activity are described, as are radioactive Ca2+ flux assays and methods to investigate signaling mediated by specific Ca2+-mobilizing messengers (IP3, cADPR, and NAADP). Techniques to modulate and suppress intra- and intercellular signals are also provided. Each protocol is complete with a list of required materials, detailed recipes for media and reagents, and troubleshooting advice.

Specific chapters are devoted to Ca2+ signaling techniques in non-mammalian systems, such as plants, yeast, zebrafish, and Xenopus. Methods for assessing Ca2+-binding kinetics and strategies for developing mathematical models of Ca2+ signaling are also included. Thus, this manual is a comprehensive laboratory resource for biochemists, cell and developmental biologists, and physiologists who are using or looking to expand their repertoire of Ca2+ techniques.

Due November 2013, 500 pp. (approx.), illus., index
Hardcover $150 £96 ISBN 978-1-621820-78-9

CONTENTS

Preface

SECTION 1. FLUORESCENCE
1. Fluorescence Microscopy
 Michael J. Sanderson, Ian Smith, Ian Parker, and Martin D. Bootman
2. Ca2+-Sensitive Fluorescent Dyes and Intracellular Ca2+ Imaging
 Martin D. Bootman, Katja Rietdorf, Tony Collins, Simon Walker, and Michael Sanderson
3. Properties and Use of Genetically Encoded FRET Sensors for Cytosolic and Organellar Ca2+ Measurements
 J. Genevieve Park and Amy E. Palmer
4. Photolysis of Caged Compounds: Studying Ca2+ Signaling and Activation of Ca2+-Dependent Ion Channels
 Janos Almassy and David I. Yule
5. Electroporation Loading and Flash Photolysis to Investigate Intra- and Intercellular Ca2+ Signaling
 Elke Decrock, Marijke De Bock, Nan Wang, Mélissa Bol, Ashish K. Gadicherla, and Luc Leybaert
6. Investigating Calcium Signaling by Confocal and Multiphoton Microscopy
 Lars Kaestner and Peter Lipp
7. Combining Calcium Imaging with Other Optical Techniques
 Marco Canepari, Dejan Zecevic, Kaşpar E. Vogt, David Ogden, and Michel De Waard
8. High-Throughput Analyses of IP3 Receptor Behavior
 Colin W. Taylor, Stephen C. Tovey, and Ana M. Rossi

SECTION 2. LUMINESCENCE
9. The Use of Aequorin and Its Variants for Ca2+ Measurements
 Veronica Granitiero, Maria Patron, Anna Tasatto, Giulia Merli, and Rosario Rizzato
10. Introduction of Aequorin into Zebrafish Embryos for Recording Ca2+ Signaling during the First 48 h of Development
 Sarah E. Webb, Ching Man Chan, and Andrew L. Miller

continued
SECTION 3. RADIOACTIVE
TECHNIQUES
11. Measurement of Intracellular Ca\(^{2+}\)
Release in Intact and Permeabilized Cells
Using 45Ca\(^{2+}\)
Ludwig Missiaen, Tomas Luyten,
Geert Bultynck, Jan B. Parys, and
Humbert De Smedt
12. Measuring Ca\(^{2+}\) Pump Activity in
Overexpression Systems and Cardiac
Muscle Preparations
Tine Holemans, Ilse Vandecaetsbeek,
Frank Wuytack, and Peter Vangheluwe

SECTION 4. ELECTROPHYSIOLOGY
13. Patch-Clamp Recording of Voltage-
Sensitive Ca\(^{2+}\) Channels
María A. Gandini, Alejandro Sandoval,
and Ricardo Félix
14. Patch-Clamp Measurement of ICRAC
and ORAI Channel Activity
Dalia Alansary, Tatiana Kilch, Christian
Holzmann, Christine Peinelt, Markus Hoth,
and Annette Lis
15. Patch-Clamp Electrophysiology of
Intracellular Ca\(^{2+}\) Channels
Don-On Daniel Mak, Horia Vais,
King-Ho Cheung, and J. Kevin Foskett
16. Bilayer Measurement of Endoplasmic
Reticulum Ca\(^{2+}\) Channels
Ilya Bezprozvanny
17. Measurement of Mitochondrial Ca\(^{2+}\)
Transport Mediated by Three Transport
Proteins: VDAC1, the Na\(^+/Ca^{2+}\) Exchanger, and the Ca\(^{2+}\) Uniporter
Danya Ben-Hail, Raz Palty, and
Varda Shoiban-Baranatz
18. Calcium-Sensitive Mini- and
Microelectrodes
Roger C. Thomas and Donald M. Bers

SECTION 5. SPECIAL TISSUES
19. The Xenopus Oocyte: A Single-Cell
Model for Studying Ca\(^{2+}\) Signaling
Yaping Lin-Moshier and
Jonathan S. Marchant
20. Imaging and Manipulating Calcium
Transients in Developing Xenopus Spinal
Neurons
Nicholas C. Spitzer, Laura N. Borodinsky,
and Cory M. Root
21. A Systematic Approach for Assessing
Ca\(^{2+}\) Handling in Cardiac Myocytes
Karin R. Sipido, Niall Macquaide, and
Virginie Bito
22. Monitoring Ca\(^{2+}\) Signaling in Yeast
Renata Tisi, Enzo Martegani, and
Rogério L. Brandão
23. Ca\(^{2+}\) Imaging in Plants Using Genetically
Encoded Yellow Cameleon Ca\(^{2+}\)
Indicators
Smrutisanjita Behera, Melanie Krebs,
Giovanna Loro, Karin Schumacher,
Alex Costa, and Jörg Kudla

SECTION 6. NAD(P)-DERIVED
MESSENGERS
24. Cyclic ADP-Ribose: Endogenous
Content, Enzymology, and Ca\(^{2+}\) Release
Andreas H. Guse, Tanja Kirchberger, and
Santina Bruzzone
25. Methods in Nicotinic Acid Adenine
Dinucleotide Phosphate Research
Antony Galione, Kai-Ting Chuang,
Tim M. Funnell, Lianne C. Davis,
Anthony J. Morgan, Margarida Ruas,
John Parrington, and Grant C. Churchill

SECTION 7. MEASURING AND
MODELING Ca\(^{2+}\) DYNAMICS
26. Measuring Ca\(^{2+}\)-Binding Kinetics of
Proteins
Guido C. Faas and István Mody
27. Translating Intracellular Calcium
Signaling into Models
Rüdiger Thul

APPENDIX 1. General Safety and Hazardous
Material Information
Index
Purifying and Culturing Neural Cells
A Laboratory Manual

Edited by Ben A. Barres, Stanford University School of Medicine and Beth Stevens, Harvard Medical School

Cell culture systems for specific neural cell types are essential for studies of their development and function.

This laboratory manual provides step-by-step protocols for isolating specific cell populations from rodent tissues and culturing them under conditions that closely resemble those in vivo. The contributors describe in detail how to dissect the brain, spinal cord, and other tissues; how to separate cells using mechanical and enzymatic tissue-dissociation strategies; the use of immunopanning and fluorescence-activated cell sorting (FACS) to enrich the target cell population; and the culture conditions that optimize cell viability and growth. Retinal ganglion cells, motor neurons, dorsal root ganglion cells, astrocytes, oligodendrocytes, and Schwann cells are covered, as are vascular cells such as pericytes and endothelial cells. Myelinating co-cultures of neurons and oligodendrocytes are also described.

The manual includes detailed recipes for media and reagents, tips for avoiding common pitfalls, and advice for designing new immunopanning protocols using tissues from other sources. Many of the protocols are accompanied by freely accessible online movies that demonstrate critical steps of the procedures. This is an essential laboratory companion for all neurobiologists, from the graduate student level upwards.

Due November 2013, 205 pp., illus., index
Hardcover $135 £87
Paperback $89 £57

ISBN 978-1-621820-11-6

CONTENTS (preliminary)
I. Introduction
II. CNS Neurons
 Chapter 1: Purification and Culture of Retinal Ganglion Cells
 Alissa Winzeler and Jack T. Wang
 Chapter 2: Purification and Culture of Corticospinal Motor Neurons
 Wim Mandmakers
 Chapter 3: Purification and Culture of Spinal Motor Neurons
 David J. Graber and Brent T. Harris
 Chapter 4: Purification and Culture of Dorsal Root Ganglion Neurons
 J. Bradley Zuchero

III. Astrocytes and Vascular Cells
 Chapter 5: Purification and Culture of Astrocytes
 Lynette C. Foo
 Chapter 6: Purification and Culture of CNS Pericytes
 Lu Zhou, Fabien Sohet, and Richard Daneman
 Chapter 7: Purification and Culture of CNS Endothelial Cells
 Lu Zhou, Fabien Sohet, and Richard Daneman

IV. Myelinating Glia
 Chapter 8: Purification and Culture of Oligodendrocyte Lineage Cells
 Jason C. Dugas and Ben Emery
 Chapter 9: Myelinating Cocultures of Purified Oligodendrocyte Lineage Cells and Retinal Ganglion Cells
 Trent A. Watkins and Anja R. Scholze
 Chapter 10: Purification of Schwann Cells
 Amanda Brosius Lutz
 Chapter 11: Designing and Troubleshooting Immunopanning Protocols for Purifying Neural Cells
 Ben A. Barres

Index
Mouse Models of Cancer
A Laboratory Manual

Edited by Cory Abate-Shen, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, Katerina Politi, Yale Cancer Center, Yale University School of Medicine, Lewis Chodosh, Perelman School of Medicine, University of Pennsylvania, and Kenneth P. Olive, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center

The laboratory mouse is an important model for addressing questions in cancer biology. In recent years, the questions have become more refined, and mouse models are increasingly being used to develop and test cancer therapeutics. Thus, the need for more sophisticated and clinically relevant mouse models has grown, as has the need for innovative tools to analyze and validate them.

This laboratory manual provides cutting-edge methods for generating and characterizing mouse models that accurately recapitulate many features of human cancer. The contributors describe strategies for producing genetic models, including transgenic germline models, gene knockouts and knockins, and conditional and inducible systems, as well as models derived using transposon-based insertional mutagenesis, RNA interference, viral-mediated gene delivery, and chemical carcinogens. Tissue recombination, organ reconstitution, and transplantation methods to develop chimeric, allograft, and xenograft models are covered. Approaches to characterize tumor development, progression, and metastasis in these models using state-of-the-art imaging, histopathological, surgical, and other techniques are also included.

Other chapters cover the use of mouse models to test and optimize drugs in pre-, co-, and post-clinical trials. An appendix specifically addresses the use of mouse cancer models in translational studies and the integration of mouse and human clinical investigations. This manual is therefore an indispensable laboratory resource for all researchers, from the graduate level upwards, who study cancer and its treatment.

Contents (preliminary)
Preface
INTRODUCTION: Of Model Pets and Cancer Models
Andrea Lunardi, Caterina Nardella, Sean Clohessy, and Pier Paolo Pandolfi

PART 1: Origins and History of Mouse Models of Cancer
1. Transgenic Mouse Models – A Seminal Breakthrough in Oncogene Research
 Harvey H. Smith and William J. Muller
2. Analyses of Tumor Suppressor Genes in Germ-line Mouse Models of Cancer
 Jingqiang Wang and Cory Abate-Shen
3. Conditional Knock-out Mouse Models of Cancer
 Chu-Xia Deng

PART 2: Recent Approaches to Modeling Cancer in Mice
4. Animal Models of Chemical Carcinogenesis: Driving Breakthroughs in Cancer Research for 100 Years
 Christopher J. Kemp
5. The Effects of Genetic Background of Mouse Models of Cancer: Friend or Foe?
 Karlyne M. Reilly
6. Genetically Engineered Knock-in and Conditional Knock-in Mouse Models of Cancer A
 Amy Rappaport and Leisa Johnson
7. Strategies to Achieve Conditional Gene Mutation in Mice
 Jessica J. Gierut, Tyler E. Jacks, and Kevin M. Haigis
8. Tetracycline-Regulated Mouse Models of Cancer
 Lewis Chodosh

Due December 2013, 500 pp. (approx.), illus., index
Hardcover $240 £150
Paperback $165 £104

www.cshlpress.org
1-855-452-6793
ISBN 978-1-621820-04-8
ISBN 978-1-621820-03-1
continued
Mouse Models of Cancer
A Laboratory Manual

9. The Switchable ER-Fusion System in Mouse Models
Jonathan Whitfield, Trevor Littlewood, Gerard Evan, and Laura Soucek

10. Using the RCAS-TVA System to Model Human Cancer in Mice
Brian Lewis

11. Transposon Insertional Mutagenesis Models of Cancer
Karen M. Mann, Nancy A. Jenkins, Neal G. Copeland, and Michael B. Mann

12. Accelerating Cancer Modeling with RNAi and Nongermline Genetically Engineered Mouse Models
Scott Lowe and Geulah Livshits

13. Mosaic Models in the Murine Hematopoietic System
Michael Hemann

14. Tissue Recombination Models for the Study of Epithelial Cancer
Yang Zong, Andrew S. Goldstein, and Owen N. Witte

15. Immunodeficient Mouse Models for Cancer Research
Leonard D. Shultz, Neal Goodwin, Fumihiko Ishikawa, and Dale L. Greiner

PART 3: Analyzing Mouse Cancer Phenotypes

16. Analysis of Mouse Model Pathology: A Primer for Studying GEM Pathobiology
Robert D. Cardiff, Claranae H. Miller, and Robert J. Munn

17. Reporter Alleles for Imaging
Scott K. Lyons, P. Stephen Patrick, and Kevin M. Brindle

18. Noninvasive Imaging of Tumor Burden and Molecular Pathways in Mouse Models of Cancer
Yuchuan Wang, Jen-Chieh Tseng, Yanping Sun, and Andrew L. Kung

19. Methods to Study Metastasis in Genetically Modified Mice
Farhia Kabeer, Levi J. Beverly, Guillaume Darrasse-Jèze, and Katrina Pospisilova

20. Methods for Analyses of the Immune System
Lauren J. Bayne and Robert H. Vonderheide

21. Analyses of Tumor Cells in Culture
Andrew D. Rhim, Martin Jechlinger, and Anil K. Rustgi

22. Translational Therapeutics in Genetically Modified Mouse Models of Cancer
Ken Olive and Katerina Politi

Appendices
Index

By Michael R. Green, Howard Hughes Medical Institute, University of Massachusetts Medical School and Joseph Sambrook, Peter MacCallum Cancer Institute, Melbourne, Australia

Molecular Cloning: A Laboratory Manual has always been the one indispensable molecular biology laboratory manual for protocols and techniques. The fourth edition of this classic manual preserves the detail and clarity of previous editions as well as the theoretical and historical underpinnings of the techniques presented. Ten original core chapters reflect developments and innovation in standard techniques and introduce new cutting-edge protocols. Twelve entirely new chapters are devoted to the most exciting current research strategies, including epigenetic analysis, RNA interference, genome sequencing, and bioinformatics. This manual is essential for both the inexperienced and the advanced user.

2012, 2,028 pp., illus. (74 4C, 157 2C, and 50 B&W), appendices, index
Cloth (three-volume set) $395 £259
Paperback (three-volume set) $365 £230

CONTENTS

VOLUME 1
Part 1 Essentials
1. Isolation and Quantification of DNA
2. Analysis of DNA
3. Cloning and Transformation with Plasmid Vectors
4. Gateway Recombinational Cloning
5. Working with Bacterial Artificial Chromosomes and Other High-Capacity Vectors
6. Extraction, Purification, and Analysis of RNA from Eukaryotic Cells
7. Polymerase Chain Reaction
8. Bioinformatics

VOLUME 2
Part 2 Analysis and Manipulation of DNA and RNA
9. Quantification of DNA and RNA by Real-Time Polymerase Chain Reaction
10. Nucleic Acid Platform Technologies
11. DNA Sequencing
12. Analysis of DNA Methylation in Mammalian Cells
13. Preparation of Labeled DNA, RNA, and Oligonucleotide Probes
14. Methods for In Vitro Mutagenesis

Part 3 Introducing Genes into Cells
15. Introducing Genes into Cultured Mammalian Cells
16. Introducing Genes into Mammalian Cells: Viral Vectors

VOLUME 3
Part 4 Gene Expression
17. Analysis of Gene Regulation Using Reporter Systems
18. RNA Interference and Small RNA Analysis
19. Expressing Cloned Genes for Protein Production, Purification, and Analysis

Part 5 Interaction Analysis
21. Mapping of In Vivo RNA-Binding Sites by UV-Cross-Linking Immunoprecipitation (CLIP)
22. Gateway-Compatible Yeast One-Hybrid and Two-Hybrid Assays

Appendices
1. Reagents and Buffers
2. Commonly Used Techniques
3. Detection Systems
4. General Safety and Hazardous Material

Index
Plants are integral to human wellbeing, and many species have been domesticated for over ten thousand years. Evidence of plant scientific investigation and classification can be found in ancient texts from cultures around the world (Chinese, Indian, Greco-Roman, Muslim etc.), while early modern botany can be traced to the late 15th and early 16th centuries in Europe. During the past several decades plant biology has been revolutionized first by molecular biology and then by the genomic era. The model organism Arabidopsis thaliana has proved an invaluable tool for investigation into fundamental processes in plant biology, many of which share commonalities with animal biology. Plant-specific processes from reproduction to immunity and second messengers have also yielded to extensive investigation. With the genomes of more than thirty plant species now available and many more planned in the near future, the impact on our understanding of plant evolution and biology continues to grow. Our increased ability to engineer plant species to a variety of ends may provide novel solutions to ensure adequate and reliable food production and renewable energy even as climate change impacts our environment. The decision to focus the 2012 Symposium on plant science reflects the enormous research progress achieved in recent years, and is intended to provide a broad synthesis of the current state of the field, setting the stage for future discoveries and application. This is the first Symposium in this historic series focused exclusively on the botanical sciences.
The Molecular Basis of Vernalization in Different Plant Groups
T.S. Ream, D.P. Woods, and R.M. Amasino

Color and Scent: How Single Genes Influence Pollinator Attraction
H. Sheehan, K. Hermann, and C. Kuhlemeier

Epigenetics
Epiallelic Variation in Arabidopsis thaliana
R.C. O’Malley and J.R. Ecker

DNA Methylation, H2A.Z, and the Regulation of Constitutive Expression
D. Codeman-Derr and D. Zilberman

What Triggers Differential DNA Methylation of Genes and TEs: Contribution of Body Methylation?
S. Inagaki and T. Kakutani

Active DNA Demethylation in Plants and Animals
H. Zhang and J.-K. Zhu

Illustrations of Mathematical Modeling in Biology: Epigenetics, Meiosis, and an Outlook
D. Richards, S. Berry, and M. Howard

Small RNAs
microRNA Biogenesis and Turnover in Plants
K. Rogers and X. Chen

Use of Forward Genetic Screens to Identify Genes Required for RNA-Directed DNA Methylation in Arabidopsis thaliana

A Transcription Fork Model for Pol IV and Pol V–Dependent RNA-Directed DNA Methylation
C.S. Pikaard, J.R. Haag, O.M.F. Pontes, T. Blevins, and R. Cocklin

Deep Sequencing from hen1 Mutants to Identify Small RNA 3′ Modifications
J. Zhai and B.C. Meyers

Small RNA-Regulated Networks and the Evolution of Novel Structures in Plants
Y. Plavskin and M.C.P. Timmermans

Plant Pathogen Responses
Effector Biology of Plant-Associated Organisms: Concepts and Perspectives

Effector Recognition and Activation of the Arabidopsis thaliana NLR Innate Immune Receptors
A.D. Steinbrenner, S. Goritschnig, K.V. Krasileva, K.J. Schreiber, and B.J. Staskawicz

A Rolling Stone Gathers No Moss, but Resistant Plants Must Gather Their MOSes
K.C.M. Johnson, O.X. Dong, Y. Huang, and X. Li

Natural Variation in Maize Defense against Insect Herbivores
L.N. Mehlh, H. Kaur, and G. Jander

Mechanisms of Nuclear Suppression of Host Immunity by Effectors from the Arabidopsis Downy Mildew Pathogen Hyaloperonospora arabidopsidis (Hpa)
M.-C. Caillaud, L. Wirthmueller, G. Fabro, S.J.M. Piquerez, S. Asai, N. Ishiue, and J.D.G. Jones

Photosynthesis and Metabolism
Photosystem II: The Water-Splitting Enzyme of Photosynthesis
J. Barber

The Remarkable Pliability and Promiscuity of Specialized Metabolism
J.-K. Weng and J.P. Noel

Author Index
Subject Index
Genome Science
A Practical and Conceptual Introduction to Molecular Genetic Analysis in Eukaryotes

By David Micklos, Cold Spring Harbor Laboratory, Bruce Nash, Cold Spring Harbor Laboratory, and Uwe Hilgert, University of Arizona

Genome Science is a textbook and laboratory manual for advanced secondary and post-secondary education. It combines approachable narrative with extensively tested lab exercises that illustrate key concepts of genome biology in humans, invertebrates, and plants. Nineteen labs, organized into four chapters, engage students with both bioinformatics exercises and in vitro experiments. Each chapter also includes an extensive introduction that provides an historical and conceptual framework. This modular structure offers many options for enhancing existing courses, starting new courses, or supporting student research projects. The book is complete with advice for instructors, laboratory planning guidelines, recipes for solutions, and answers to student questions.

2013, 704 pp., illus. (3 4C, 606 B&W), index
Hardcover $55 £38

CONTENTS
1. Genome as Information
 Introduction
 Lab 1.1 Annotating Genomic DNA
 Lab 1.2 Detecting a Lost Chromosome
 Lab 1.3 Comparing Diversity in Eukaryotes
 Lab 1.4 Determining the Transposon Content in Grasses
 Lab 1.5 Identifying GAI Gene Family Members in Plants
 Lab 1.6 Discovering Evidence for Pseudogene Function
 Laboratory Planning and Preparation
 Recipes for Reagents and Stock Solutions
 Answers to Questions

2. The Human Genome
 Introduction
 Lab 2.1 Using Mitochondrial DNA Polymorphisms in Evolutionary Biology
 Lab 2.2 Using an Alu Insertion Polymorphism to Study Human Populations
 Lab 2.3 Using a Single-Nucleotide Polymorphism to Predict Bitter-Taste Ability
 Laboratory Planning and Preparation
 Recipes for Reagents and Stock Solutions
 Answers to Questions

3. Plant Genomes
 Introduction
 Lab 3.1 Detecting a Transposon in Corn
 Lab 3.2 Detecting a Transposon in Arabidopsis
 Lab 3.3 Linkage Mapping a Mutation
 Lab 3.4 Detecting Genetically Modified Foods by Polymerase Chain Reaction
 Lab 3.5 Using DNA Barcodes to Identify and Classify Living Things
 Lab 3.6 Detecting Epigenetic DNA Methylation in Arabidopsis
 Laboratory Planning and Preparation
 Recipes for Reagents and Stock Solutions
 Answers to Questions

4. Genome Function
 Introduction
 Lab 4.1 Culturing and Observing C. elegans
 Lab 4.2 Using E. coli Feeding Strains to Induce RNAi and Knock Down Genes
 Lab 4.3 Examining the RNAi Mechanism
 Lab 4.4 Constructing an RNAi Feeding Vector
 Laboratory Planning and Preparation
 Recipes for Reagents and Stock Solutions
 Answers to Questions

Cautions Appendix
Equipment Appendix
Subject Index

www.cshlpresse.org
1-855-452-6793
A12
Lab Math: A Handbook of Measurements, Calculations, and Other Quantitative Skills for Use at the Bench
Second Edition
By Dany Spencer Adams, The Tufts Center for Regenerative and Developmental Biology and Department of Biology, Tufts University

Lab Math, Second Edition, collects in one place the numbers and equations you rely on for your experiments and use to report your data—what they mean and how to use them—as well as easy-to-follow shortcuts for making the math easier. Written in an accessible and informal style, Lab Math describes basic mathematical principles and various tasks involving numbers, including how to calibrate lab equipment, how to make solutions, and the numbers involved in various methods for quantifying DNA, RNA, and proteins, and an all-new section on quantitative polymerase chain reaction. Basic statistical ideas and methods and the proper reporting of uncertainty are described in simple-to-understand language. Also included are reference tables, charts and "plug-and-chug" equation blanks for specific experimental procedures. Since the publication of the first edition in 2003, Lab Math has become an essential math reference and teaching resource for both on-the-spot practical information and background for understanding numerical tasks. Important additions in this second edition make Lab Math an even more useful tool for every laboratory.

2013, 332 pp., illus., index
Concealed wire binding $59 £41

CONTENTS
Preface
1. Numbers and Measurements in the Laboratory
2. Chemistry by the Numbers
3. Equipment for Measuring, Counting, and Otherwise Quantifying
4. Making Solutions
5. DNA and RNA
6. Proteins
7. Statistics and Reports: Collecting, Interpreting, and Presenting Numerical Data
8. Reference Tables and Equations
Index
Introduction to Protein-DNA Interactions
Structure, Thermodynamics, and Bioinformatics

By Gary D. Stormo, Ph.D.

One of the foundations of molecular biology is how the interactions of proteins with DNA control many aspects of gene expression. Since the mid-20th century, from discoveries of the lac repressor and operator and the competition between the cI and cro proteins for the same segment of DNA, we have learned an enormous amount about the interactions of proteins with DNA and their control of fundamental processes in the cell. *Introduction to Protein–DNA Interactions: Structure, Thermodynamics, and Bioinformatics* describes what we know about protein–DNA interactions from the complementary perspectives of molecular and structural biology and bioinformatics and how each perspective informs the others. A particular emphasis is on how insights from experimental work can be translated into specific computational approaches to create a unified view of the field and a fuller understanding of protein–DNA interactions.

2013, 208 pp., illus. (78 4C, 5 B&W), index

<table>
<thead>
<tr>
<th>Format</th>
<th>Price</th>
<th>ISBN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardcover</td>
<td>$79</td>
<td>978-1-936113-49-1</td>
</tr>
<tr>
<td>Paperback</td>
<td>$45</td>
<td>978-1-936113-50-7</td>
</tr>
</tbody>
</table>

CONTENTS

Preface
1 Importance of Protein–DNA Interactions

STRUCTURE
2 The Structure of DNA
3 Protein Structure and DNA Recognition
4 Sequence-Specific Interactions in Protein–DNA Complexes

THERMODYNAMICS
5 Binding Affinity, Cooperativity, and Specificity
6 Energetics and Kinetics of Binding

BIOINFORMATICS
7 Bioinformatics of DNA-Binding Sites
8 Bioinformatics of Transcription Factors and Recognition Models
9 Transcriptional Genomics

Index
Next-Generation DNA Sequencing Informatics

By Stuart M. Brown, New York University School of Medicine

Next-generation DNA sequencing (NGS) technology has revolutionized biomedical research, making complete genome sequencing an affordable and frequently used tool for a wide variety of research applications. Bioinformatics methods to support DNA sequencing have become a critical bottleneck for many researchers and organizations wishing to make use of NGS technology. This book provides a thorough introduction to the necessary informatics methods and tools for operating NGS instruments and analyzing NGS data. The book also provides extensive reference to best-practice bioinformatic methods for the most commonly used NGS technologies and applications. The book also includes reference to, and guidance on, the setup and use of essential software for NGS data analysis. This is the first book of its kind to address the informatics needs of scientists who wish to take advantage of the explosion of research opportunities offered by new DNA sequencing technologies.

2013, 241 pp., illus. (48 4C & 15 B&W), index
Hardcover $59 £41

ISBN 978-1-936113-87-3

Please see the Table of Contents to purchase individual chapters.
Click on the chapter title to purchase individual chapters as PDFs.

CONTENTS
Preface
Acknowledgments
About the Authors
1. Introduction to DNA Sequencing
 Stuart M. Brown
2. History of Sequencing Informatics
3. Visualization of Next-Generation Sequencing Data
 Phillip Ross Smith, Kranti Konganti, and Stuart M. Brown
4. DNA Sequence Alignment
 Efstratios Efstathiadis
5. Genome Assembly Using Generalized deBruijn Digraphs
 D. Frank Hsu
6. De Novo Assembly of Bacterial Genomes from Short Sequence Reads
 Silvia Argimón and Stuart M. Brown
7. Genome Annotation
 Steven Shen
8. Using NGS to Detect Sequence Variants
 Jinhua Wang, Zuojian Tang, and Stuart M. Brown
9. ChIP-seq
 Zuojian Tang, Christina Schweikert, D. Frank Hsu, and Stuart M. Brown
10. RNA Sequencing with NGS
 Stuart M. Brown, Jeremy Goecks, and James Taylor
11. Metagenomics
 Alexander Alekseyenko and Stuart M. Brown
12 High-Performance Computing in DNA Sequencing Informatics
 Efstratios Efstathiadis and Eric R. Peskin
Glossary
Index
Mammalian Development
Networks, Switches, and Morphogenetic Processes

Edited by Patrick P.L. Tam, Children’s Medical Research Institute, W. James Nelson, Stanford University, and Janet Rossant, The Hospital for Sick Children

During the last decade, research in developmental biology has undergone a dramatic change brought about by the availability of whole genome sequences from diverse organisms, the availability of transcriptomes and epigenomes, advanced imaging techniques and the increased understanding of the role of stem cells in organ and tissue development and regeneration. These advances have been integrated with traditional approaches of genetic manipulations and detailed phenotypic analyses in experimental model organisms such as the mouse.

This book provides a contemporary overview of the conceptual framework of molecular and cellular mechanisms of mammalian development, and a glimpse into future directions in mammalian developmental biology and its relevance to cellular and tissue therapy. Major areas of focus are transcriptional and epigenetic switches and the activity of genetic networks in cell differentiation, the role of signaling pathways, and tissue modeling and organ formation. Another major focus is on the translation of basic knowledge of developmental processes into stem cell biology, directed differentiation of pluripotent or lineage-biased progenitors, and the potential for regenerative medicine.

This book is aimed at senior undergraduates interested in the scope of modern developmental biology, graduate students and post-doctoral fellows who are beginning to explore the mouse as a model system for studying vertebrate development and its relevance to human diseases, and established scientists in fields outside the traditional areas of developmental biology who are looking to apply their knowledge and expertise in new ways.

2013, 520 pp., illus. (120 4C, 21 B&W), index
Hardcover $155 £98
ISBN 978-1-936113-24-8

CONTENTS
Preface

SECTION I. GENOME, EPIGENOME, PROTEOME, AND CELL SIGNALING
Summary — Janet Rossant
1. Pluripotency in the Embryo and in Culture
 Jennifer Nichols and Austin Smith
2. Genomic Imprinting and Epigenetic Control of Development
 Andrew Fedoroff, Joshua Mugford, and Terry Magnuson
3. MicroRNAs as Developmental Regulators
 Kathryn N. Ivey and Deepak Srivastava
4. Proteomic Analysis of Stem Cell Differentiation and Early Development
 Dennis Van Hoof, Jeroen Krijgsveld, and Christine Mummery
5. Signaling in Cell Differentiation and Morphogenesis
 M. Albert Basson

SECTION II. MORPHOGENETIC PROCESSES
Summary — W. James Nelson
6. Branching Morphogenesis: From Cells to Organs and Back
 Amanda Ochoa-Espinosa and Markus Affolter
7. Polarity in Mammalian Epithelial Morphogenesis
 Julie Roigvoj, Xiao Peng, and Keith Mostov
8. Cell Division Modes and Cleavage Planes of Neural Progenitors during Mammalian Cortical Development
 Fumio Matsu zakai and Atsunori Shitamukai
9. Epithelial-Mesenchymal Transition: General Principles and Pathological Relevance with Special Emphasis on the Role of Matrix Metalloproteinases
 Paola Nisticò, Minna J. Bisell, and Derek C. Radisky
10. Molecular Mechanisms of Cell Segregation and Boundary Formation in Development and Tumorigenesis
 Edward Battle and David G. Wilkinson
11. The Synchrony and Cyclicity of Developmental Events
 Yemiko Sato
12. Intercellular Interaction, Position, and Polarity in Establishing Blastocyst Cell Lineages and Embryonic Axes
 Robert O. Stephenson, Janet Rossant, and Patrick P.L. Tam
13. The Dynamics of Morphogenesis in the Early Mouse Embryo
 Jaime A. Rivera-Perez and Anna-Katerina Hadjantonakos

continued
Mammalian Development
Networks, Switches, and Morphogenetic Processes

SECTION III. SIGNALS AND SWITCHES IN LINEAGE SPECIFICATION, TISSUE DIFFERENTIATION, AND ORGANOGENESIS

Summary — Patrick P. L. Tam

14. Hematopoiesis
 Michael A. Rieger and Timm Schroeder

15. Primordial Germ Cells in Mice
 Mitinori Saitou and Masashi Yamaji

16. Signals and Switches in Neural Crest Cell Differentiation
 Shachi Bhatt, Raul Diaz, and Paul A. Trainor

17. Molecular Control of Neurogenesis: A View From the Mammalian Cerebral Cortex
 Ben Martynoga, Daniela Drechsel, and Francois Guillemot

18. Development and Homeostasis of the Skin Epidermis
 Panagiota A. Sotiropoulou and Cedric Blanpain

19. Adipogenesis
 Kelesha Sarjeant and Jacqueline M. Stephens

20. Blood and Lymphatic Vessel Formation
 Victoria L. Bautch and Kathleen M. Caron

21. Building Muscle: Molecular Regulation of Myogenesis
 C. Florian Bentzinger, Yu Xin Wang, and Michael A. Rudnicki

22. Development of the Endochondral Skeleton
 Faxin Long and David M. Ornitz

23. Signaling Networks Regulating Tooth Organogenesis and Regeneration, and the Specification of Dental Mesenchymal and Epithelial Cell Lineages
 Maria Jussila and Irma Theileff

24. Eye Development and Retinogenesis
 Whitney Heatner and Larysa Pevny

25. Molecular Mechanisms of Inner Ear Development
 Doris K. Wu and Matthew M. Kelley

26. Signaling and Transcriptional Networks in Heart Development and Regeneration
 Benoit G. Bruneau

27. Signaling Networks Regulating Development of the Lower Respiratory Tract
 David M. Ornitz and Yongjun Yin

28. Deconstructing Pancreas and Developmental Biology
 Cecil M. Benitez, William R. Goodyer, and Seung K. Kim

29. Transcriptional Networks in Liver and Intestinal Development
 Karyn L. Sheaffer and Klaus H. Kaestner

30. Mammalian Kidney Development: Principles, Progress, and Projections
 Melissa H Little and Andrew P. McMahon

Index
Signal Transduction

Edited by Lewis Cantley, Harvard Medical School, Tony Hunter, The Salk Institute, Richard Sever, Cold Spring Harbor Laboratory, and Jeremy Thorner, University of California, Berkeley

Signal transduction pathways are molecular circuits that define how cells communicate with each other and respond to their environment. This new textbook for the first time provides a comprehensive view of the subject by covering both the basic mechanisms involved and the roles of signal transduction in fundamental biological processes. It starts by describing the basic players — signals, receptors, second messengers, and effectors — before comprehensively mapping the various different signaling pathways that operate in cells. It then goes on to provide detailed descriptions of how signal transduction functions in essential processes such as cell growth and division, metabolism, sensory perception, immunity, and reproduction.

Due December 2013, 600 pp. (approx.), illus., index
Hardcover $165 £110

CONTENTS (preliminary)

Preface
Foreword
 Edmond Fischer

I. GENERAL PRINCIPLES AND MECHANISMS

1. Signals and Receptors
 Carl Henrik-Heldin, Benson Lu, Ron Evans, and Silvio Gutkind

2. General Principles and Mechanisms of Protein Regulation in Signal Transduction
 Michael J. Lee and Michael B. Yaffe

3. Second messengers
 Alexandra Newton and Susan Taylor

4. Signaling Networks: Computational Abilities and Decision-making
 Evren U. Azeloglu and Ravi Iyengar

II. PATHWAYS/ROAD MAPS

MAP Kinase Pathways
 Deborah Morrison

PI3K-PKB/Akt Pathway Signaling
 Brian A. Hemmings and David F. Restuccia

mTOR Signaling
 Mathieu Laplante and David M. Sabatini

Calcium Signaling
 Martin D. Bootman

The Cyclic AMP Pathway
 Paolo Sassone-Corsi

The Wnt Signaling
 Roel Nusse

Hedgehog Signaling
 Philip W. Ingham

Notch Pathway
 Raphael Kopan

Signaling by the TGF-β Superfamily
 Jeffrey L. Whitfield

JAK/STAT Pathway
 Douglas Harrison

Toll-like Receptor Signaling
 Kuan-Huat Lim and Louis M. Staudt

Immunoreceptor Signaling
 Lawrence E. Samelson

Signaling by Nuclear Receptors
 Richard Sever and Christopher K. Glass

The Hippo Pathway
 Kieran F. Harvey and Iswar K. Hariharan

III. SIGNALING PROCESSES

5. Signaling to the G1 Cell Cycle
 Robert J. Duronio and Yue Xiong

6. Signaling Pathways that Regulate Cell Division
 Nicholas Rhind and Paul Russell

7. Cell Growth and Metabolism
 Patrick S. Ward and Craig B. Thompson

8. Signal Transduction and the Regulation of Cell Migration
 Peter Devreotes and Rick Horwitz

9. Signal Pathways in Cell Polarity
 Luke M. McCaffrey and Ian G. Macara

10. Signaling Mechanisms Controlling Cell Fate and Embryonic Patterning
 Norbert Perrimon, Chrysovala Pitsouli, and Ben-Zion Shilo

11. Signaling by Sensory Receptors
 David Julius and Jeremy Nathans

continued
Signal Transduction

12 Synaptic Signaling in Learning and Memory
Mary B. Kennedy

13. Signaling in Muscle Contraction
Ivana Y. Kuo and Barbara E. Ehrlich

14. Organismal Carbohydrate and Lipid Homeostasis
D. Graham Hardie

15. Signaling in Innate Immunity and Inflammation
Kim Newton and Vishva Dixit

16. Signaling in Lymphocyte Activation
Doreen Cantrell

17. Vertebrate Reproduction
Sally Kornbluth and Rafael Fissore

18. Stress Responses
Gökhan Hotamisligil and Roger J. Davis

19. Death Signaling
Douglas R. Green and Fabien Llambi

20. Subversion of Cell Signaling by Pathogens
Kim Orth and Neal Alto

21. Signaling in Cancer
Richard Sever and Joan S. Brugge

22. Outlook
Jeremy Thorner, Lewis Cantley, Tony Hunter, and Richard Sever

Index
Blue Skies and Bench Space
Adventures in Cancer Research

By Kathleen M. Weston, London Research Institute

London's Imperial Cancer Research Fund laboratories at Lincoln’s Inn Fields and Clare Hall (renamed The London Research Institute in 2002) were world-famous for a century. This book, published with the assistance of the Institute, contains snapshots of the science done at the ICRF, a selection of discoveries with lasting impact on biological knowledge. The author, Kathy Weston, an experienced research investigator, also tells the human stories underlying the facts of discovery, revealing what really happened, and the personalities involved, behind the passive voice and dry logic of scientific reports. Science is an emotional journey, an art, a vocation, a complicated landscape of data in which, just sometimes, the trained and alert eye can detect the glint of gold. In this book, the gold is there but the all too human scientists stumbling towards its seductive glimmer are the real treasure.

2013, 336 pp., illus., glossary, index
Hardcover $22 £14

CONTENTS

Preface
Acknowledgments
1 Beginnings
2 DNA Tumour Viruses and the Fabulous Fifth Floor
3 Birth of a Superhero
4 Country Life: Repair and Replication
5 Brake Failure
6 Divide and Rule
7 Death and Glory
8 Walk This Way
9 The Hedgehog Three

Glossary
Index
The Dawn of Human Genetics

By V.V. Babkov
Edited by James Schwartz; Translated from the Russian by Victor Fet

In Russia, the initial euphoria of the Bolshevik leaders for a new socialist society ... combined with a commitment to a truly universal health care system, gave a huge boost to the emergence of both the eugenic and medical aspects of human genetics. The obstacles that proved so formidable to the successful launch of the field in the West—the lack of available data on the genealogy of diseases in families, the difficulty in getting a statistically significant number of identical twins to study, and the skepticism of the medical establishment—were all swept aside in the Soviet Union. In the 1920s ... the groundwork was laid for a uniquely Russian approach to medical genetics and (the foundation of) the world’s leading center for the study of the genetic basis of many diseases and human genetics in general. The immense success of the movement, which is little known even to Russians, is brought to life in V.V. Babkov’s The Dawn of Human Genetics, as is its dramatic and violent end, which resulted in the “liquidation” of many of the country’s finest biologists, as well as a major setback to the development of world science. Like many other promising ideas and projects that were born in the Soviet Union, this one was abruptly truncated and then virtually eradicated.

CONTENTS

Introduction by James Schwartz
Acknowledgments
A Note from the Publisher
Key to Russian Acronyms and Abbreviations
Preface
Introduction
Expectations of a New Man
Three Squares by Malevich
Degeneration
Social and Biological Hierarchies
The Eugenics of Francis Galton
National Characteristics of Eugenics in the 1920s
Eugenics as Presented on the Russian Stage
Anthropotechnical Projects of Peter I (Historical Note), M.V. Volotskoy (1923)
Toward a History of the Eugenic Movement, M.V. Volotskoy (1924)
Eugenics in School, Yu.A. Filipchenko (1925)
Human Inheritance, Thomas Hunt Morgan (1924)
Our Eugenic Prospects, S.N. Davidenkov (1930)

The Russian Eugenics Society

Improvement of the Human Race, N.K. Koltsov (1922)
Genetic Analysis of the Psychological Features of Man, N.K. Koltsov (1924)
The Impact of Culture on Selection in Humans, N.K. Koltsov (1924)
Genealogies of Our Vydvizhentsy [Self-Made Men], N.K. Koltsov (1926)
Russkiy Evgenicheskiy Zhurnal [Russian Eugenics Journal] (1922–1930)

Bureau of Eugenics

Our Outstanding Scholars, Yu.A. Filipchenko (1922)
Full Members of the Former Imperial, Now Russian, Academy of Sciences over the Last 80 Years, T.K. Lepin, Yu.A. Lus, and Yu.A. Filipchenko (1846–1924)
The Intelligentsia and Giftedness, Yu.A. Filipchenko (1925)

Voprosy Biologii i Patologii Yevreev [Problems of the Biology and Pathology of Jews] (1926–1930)

Genealogies and Pathographies

Genealogy of Ch. Darwin and F. Galton, N.K. Koltsov (1922)
The Genealogy of the Count Tolstoy, N.P. Chulkov (1924)
On the Descendants of Baron Pyotr Pavlovich Shafirov, Yu.A. Nidelov (1925)
Genealogy of the Decembrist Muravyov, N.P. Chulkov (1927)
The Bakunins, P.E. Rokitsky (1927)
Ancestors and Descendants of the Academician Karl Ernst von Baer, Yu.A. Nidelov and N.K. Eisen (1928)
Decembrists (Toward the Analysis of Hereditary Traits), V. Zolotaryov (1928)
The Ancestors of Count S.Yu. Witte, S.V. Lyubimov (1928)

continued
The Dawn of Human Genetics

The Characterological Analysis of Families, M.V. Volotskoy (1933)
Klinicheskii Arkhiv Genialnosti i Odarenosti (Evropatologii) [Clinical Archive of Genius and Talent (of Europathology)] (1925–1930)

Society for Study of Racial Pathology

Bolshevist Eugenics

The End of Eugenics

Goals and Methods of Studies of Racial Pathology, N.K. Koltsov (1929)
The Term “Race” in Zoology and Anthropology, V.V. Bunak (1930)

Anthropogenetics and Eugenics in a Socialist Society, A.S. Serebrovsky (1929)

Letter to the Editor, A.S. Serebrovsky (1930)

Eugenics, G. Batkis (1932)

What Is Lamarckism?

Bio/social Eugenics

Primacy of the Gene and Legitimacy of Power

Change in Direction on the Philosophical Front

The First Discussion on Genetics

Early Medical Genetics

The Medical Genetics Institute

The 1934 Conference

Course on Genetics for Physicians

Genetics and Pathology (in Relation to the Current Crisis in Medicine), S.G. Levit (1929)

Man as a Genetic Object and Twin Studies as a Method of Anthropogenetics, S.G. Levit (1930)

Preface, S.G. Levit (1936)

Anthropogenetics and Medicine, S.G. Levit (1934)

Some Basic Stages of Development of Theoretical Genetics and Their Significance from the Point of View of Medicine, H.J. Muller (1934)

The Role of Genetics in the Study of Human Biology, N.K. Koltsov (1934)

Genetics and Clinical Practice, S.N. Davidenkov (1934)

Conditional Tropism and the Moscow School

The Ideas of the Moscow School

Clinical-Genetic Analysis of Pathological Types

The Hypothesis of Conditioned Tropisms

The Rout of Medical Genetics

Letter from Muller to Stalin (1936)

Presentation by S.N. Davidenkov (1939)

The Fate of Koltsov’s Eugenics

Koltsov and the 1936 Discussions

Academy of Sciences in 1938

Koltsov’s Institute and the Academy of Sciences

Trial by Inquisition

After Koltsov

The Origin of Altruism: Ethics from the Perspective of Human Evolutionary Genetics, V.P. Efroimson (1971)

Homo sapiens et humanus—Man with a Capital “M” and the Evolutionary Genetics of Humaneness (About the Article of V.P. Efroimson on the Evolutionary-Genetic Basis of Ethics), B.L. Astaurov (1971)

Mysteries of Genetics, Yelena Sakanyan (1979)

The Biosphere and Mankind, N.V. Timofeev-Resovsky (1968)

Conclusion

Afterword

Index
Bacterial Pathogenesis

Edited by Pascale Cossart, Institut Pasteur and Stanley Maloy, San Diego State University

Bacterial pathogens cause numerous human diseases. This collection from Cold Spring Harbor Perspectives in Medicine surveys the spectrum of bacterial pathogens from Salmonella and Shigella to Helicobacter pylori. It examines the basic biology of these parasites, their virulence mechanisms and the host’s response to infection. The effectiveness of antibiotics and vaccine strategies are also covered, along with the novel antimicrobial therapies that are being developed.

Due December 2013, 300 pp. (approx.), illus., index
Hardcover $135 £85
ISBN 978-1-936113-36-1

CONTENTS (preliminary)

Preface
The Inside Story of Shigella Invasion of Intestinal Epithelial Cells
Nathalie Carayol and Guy Tran Van Nhieu

Model Systems for Studying Enteropathogenic Escherichia coli Infections
Robyn Law, Libi Gur-Arie, Ilan Rosenshine, and B. Brett Finlay

Entry of Listeria monocytogenes in Mammalian Epithelial Cells: Toward a Complete Picture
Javier Pizarro-Cerdá, Andreas Kühbacher, and Pascale Cossart

The Pneumococcus: Epidemiology, Microbiology, and Pathogenesis
Birgitta Henriques-Normark and Elaine I. Tuomanen

Bartonella and Brucella—Weapons and Strategies for Stealth Attack
Houchaima Ben-Tekaya, Jean-Pierre Gorvel, and Christoph Deho

Pathogenesis of Meningococccemia
Mathieu Courreel, Olivier Join-Lambert, Hervé Lécuyer, Sandrine Bourdoulous, Stefano Marullo, and Xavier Nasif

Mechanisms of Francisella tularensis Intracellular Pathogenesis
Jean Celli and Thomas C. Zahrt

Chlamydial Intracellular Survival Strategies
Robert J. Bastidas, Cherilyn A. Elwell, Joanne N. Engel, and Raphael H. Valdivia

Echoes of a Distant Past: The cag Pathogenity Island of Helicobacter pylori
Nicola Pacchiani, Stefano Cemini, and Antonello Covacci

Epigenetics and Bacterial Infections
Hélène Bierne, Mélanie Hamon, and Pascale Cossart

RNA-Mediated Regulation in Pathogenic Bacteria
Isabelle Caldelari, Yanjie Chao, Pascale Romby, and Jörg Vogel

Bacterial Quorum Sensing: Its Role in Virulence and Possibilities for Its Control
Steven T. Rutberg and Bonnie L. Bassler

Mechanisms and Biological Roles of Contact-Dependent Growth Inhibition (CDI) Systems
Christopher S. Hayes, Sanna Koskiniemi, Zachary C. Ruhe, Stephen J. Poole, and David A. Low

Bacterial Assemblies and Biofilms
Maria Kostakioti, Maria Hadjisfangiskou, and Scott J. Hultgren

General Aspects and Recent Advances on Bacterial Protein Toxins
Emmanuel Lemichez and Joseph T. Barbieri

Helicobacter and Salmonella Persistent Infection Strategies
Denise M. Monack

A Genome-Wide Perspective of Human Diversity and its Implications in Infectious Disease
Jérémie Manry and Lluis Quintana-Murci

Host-Specificity of Bacterial Pathogens
Andreas Bäumler and Ferric C. Fang

Concepts and Mechanisms: Crossing Host Barriers
Kelly S. Donan, Anirban Banerjee, Olivier Disson, and Marc Lecuit

Vaccines, Reverse Vaccinology, and Bacterial Pathogenesis
Isabel Delany, Rino Rappuoli, and Kate L. Seib

Rational Design of Probiotics
Judith Behmen, Elisa Deriu, Martina Sassone-Corsi, and Manuela Raffatellu

Therapeutic and Prophylactic Applications of Bacteriophage in Modern Medicine
Sankar Adhya, Carl R. Mervil, and Biswajit Biswas

Index
Cell Survival and Cell Death

Edited by Eric H. Baehrecke, University of Massachusetts, Douglas R. Green, St. Jude Children’s Research Hospital, Sally Kornbluth, Duke University, and Guy S. Salvesen, Sanford-Burnham Medical Research Institute

Billions of cells die every day in the human body. This is required for normal development and physiology, as well as the elimination of errant cells. Apoptosis and other cell death mechanisms are complex and carefully controlled. If cell death does not occur when it should, cancer and other diseases may develop.

Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology covers all aspects of apoptosis, autophagy, and necrosis. Contributors describe in detail the molecular mechanisms of cell death signaling, including death receptor-ligand systems, BCL-2 family proteins, mitochondrial permeabilization, the endocytic pathway, caspases, and signals that trigger the clearance of dying cells. Survival mechanisms and proteins such as IAPs that antagonize cell death are also described.

This volume includes discussion of tumor suppression, the altered metabolism of cancer cells, and the development of therapeutic drugs. It is an essential reference for cell and developmental biologists, cancer biologists, and all who want to understand when and how cell death is required for life.

2013, 380 pp., illus. (59 4C, 25 B&W), index
Hardcover $135 £85

CONTENTS
Preface
Evolution of the Animal Apoptosis Network
Christian M. Zmasek and Adam Godzik
Caspase Functions in Cell Death and Disease
David R. McIlwain, Thorsten Berger, and Tak W. Mak
Apoptotic and Nonapoptotic Caspase Functions in Animal Development
Masayuki Miura
Cellular Mechanisms Controlling Caspase Activation and Function
Amanda B. Parrish, Christopher D. Freel, and Sally Kornbluth
Caspase Substrates and Inhibitors
Marcin Porba, Aleksandra Strójk, Guy S. Salvesen, and Marcin Dróg
Death Receptor-Ligand Systems in Cancer, Cell Death, and Inflammation
Henning Walczak
Mitochondrial Regulation of Cell Death
Stephen W.G. Tait and Douglas R. Green
Multiple Functions of Bcl-2 Family Proteins
J. Marie Hardwick and Lucian Soane
Inhibitor of Apoptosis (IAP) Proteins—Modulators of Cell Death and Inflammation
John Silke and Pascal Meier
Clearing the Dead: Apoptotic Cell Sensing, Recognition, Engulfment, and Digestion
Amelia Hochreiter-Hufford and Kodi S. Ravichandran
The Endolysosomal System in Cell Death and Survival
Urška Repnik, Maria Hafner-Cesen, and Boris Turk
Metabolic Stress in Autophagy and Cell Death Pathways
Brian J. Altman and Jeffrey C. Rathmell
mTOR–Dependent Cell Survival Mechanisms
Chien-Min Hung, Lucia García-Haro, Cynthia A. Sparks, and David A. Guertin
Oncogenes in Cell Survival and Cell Death
Jake Shortt and Ricky W. Johnstone
The Role of the Apoptotic Machinery in Tumor Suppression
Alex R.D. Delbridge, Liz J. Valente, and Andreas Strasser
The Role of Apoptosis-Induced Proliferation for Regeneration and Cancer
Hyung Don Ryoo and Andreas Bergmann
Fueling the Flames: Mammalian Programmed Necrosis in Inflammatory Diseases
Francis Ka-Ming Chan
Regulation and Function of Autophagy during Cell Survival and Cell Death
Gautam Das, Bhupendra V. Shrawage, and Eric H. Baehrecke
Autophagy and Cancer
Li Yen Mah and Kevin M. Ryan
Autophagy and Neuronal Cell Death in Neurological Disorders
Ralph A. Nixon and Dun-Sheng Yang
Index
Cystic Fibrosis
A Trilogy of Biochemistry, Physiology, and Therapy

Edited by John R. Riordan, The University of North Carolina at Chapel Hill, Richard C. Boucher, The University of North Carolina at Chapel Hill, and Paul M. Quinton, University of California, San Diego School of Medicine

Cystic fibrosis is caused by mutations in the CFTR gene, which encodes an ion channel protein that regulates anion movement across the epithelial membranes of the lungs, pancreas, and other organs. In cystic fibrosis patients, anion transport is impeded, causing sticky, viscous mucus to build up and clog these vital organs.

Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Medicine provides an in-depth examination of cystic fibrosis biology and treatment strategies. Contributors examine the structure and dynamics of CFTR, its normal physiological roles in the airway and digestive epithelia, and how those operations are impaired in patients with cystic fibrosis. The numerous CFTR mutations and how they alter the expression, synthesis, processing, and function of CFTR in cystic fibrosis and other CFTR-related disorders are considered, as are disease-modifying genes that influence disease severity.

This volume includes discussions of therapy and treatment strategies for cystic fibrosis, ranging from airway clearance techniques and pancreatic enzyme replacements to the modulation of CFTR and related ion transport pathways. It will be an essential reference for molecular and cellular biologists, physiologists, and clinicians interested in understanding the biological basis of the disease and the search for effective therapies.

2013, 340 pp., illus. (40 4C; 15 B&W), index
Hardcover $135 £85

CONTENTS

Preface

MOLECULAR BASIS
The Cystic Fibrosis Gene: A Molecular Genetic Perspective
Lap-Chieh Tiusi and Raulan Dorfman
Assessing the Disease-Liability of Mutations in CFTR
Claude Ferec and Gary R. Cutting
The CFTR Ion Channel: Gating, Regulation, and Anion Permeation
Tzyh-Chang Huang and Kevin L. Kirk
Cystic Fibrosis Transmembrane Conductance Regulator (ABCC7) Structure
John F. Hunt, Chi Wang, and Robert C. Ford
Dynamics Intrinsic to Cystic Fibrosis Transmembrane Conductance Regulator Function and Stability
P. Andrew Chong, Paideep Kota, Nikolay V. Dokholyan, and Julie D. Forman-Kay
The Influence of Genetics on Cystic Fibrosis Phenotypes
Michael R. Knowles and Mitchell Drumm

PHYSIOLOGICAL CHANGES
Status of Fluid and Electrolyte Absorption in Cystic Fibrosis
M.M. Reddy and M. Jackson Stats
Physiology of Epithelial Chloride and Fluid Secretion
Raymond A. Frizzell and John W. Hannahan
Mechanisms of Bicarbonate Secretion: Lessons from the Airways
Robert J. Bridges
Transepithelial Bicarbonate Secretion: Lessons from the Pancreas
Hyun Woo Park and Min Goo Lee
CFTR, Mucins, and Mucus Obstruction in Cystic Fibrosis
Sileia M. Kreda, C. William Davis, and Mary Callaghan Rose
Supramolecular Dynamics of Mucus
Pedro Verdugo
Perspectives on Mucus Properties and Formation Lessons from the Biochemical World
Daniel Ambort, Malin E.V. Johansson, Jenny K. Gustafson, Anna Ermund, and Gunnar C. Hansson

THERAPEUTIC STRATEGIES
Structure and Function of the Mucus Clearance System of the Lung
Brenda M. Button and Brian Button
The Cystic Fibrosis Airway Microbiome
Susan V. Lynch and Kenneth D. Bruce
The Cystic Fibrosis of Exocrine Pancreas
Michael Wilchanski and Ivana Novak
The Cystic Fibrosis Intestine
Robert C. De Lisle and Drucy Borowitz
Cystic Fibrosis Transmembrane Regulator Correctors and Potentiators
Steven M. Rowe and Alan S. Verkman
Antibiotic and Anti-Inflammatory Therapies for Cystic Fibrosis
James F. Chmiel, Michael W. Konstan, and J. Stuart Elborn
New Pulmonary Therapies Directed at Targets Other than CFTR
Scott H. Donaldson and Luis Galietta

Index

www.cshlpress.org
1-855-452-6793
Cellular DNA is constantly bombarded with environmental and chemical assaults that damage its molecular structure. In addition, the normal process of DNA replication is prone to error and may introduce mutations that can be passed to daughter cells. If left un repaired, these DNA lesions can have serious consequences, such as cancer.

Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology reviews the mechanisms that cells use to recognize and repair various types of DNA damage. Contributors discuss base excision repair, nucleotide excision repair, mismatch repair, homologous recombination, nonhomologous end joining, the SOS response, and other pathways in prokaryotes and eukaryotes, and describe how these processes are linked to DNA replication, transcription, and cell cycle controls. The repair of telomeric and mitochondrial DNA is described, as is the influence of chromatin structure on DNA repair.

This volume also includes discussion of human genetic diseases that involve defects in DNA damage repair. It is an essential reference for molecular and cell biologists, medical geneticists, cancer biologists, and all who want to understand how cells maintain genomic integrity.

Due October 2013, 445 pp., illus. (86 4C, 10 B&W), index
Hardcover $135 £85
DNA Replication

Edited by Stephen D. Bell, Indiana University, and Marcel Méchali, Institute of Human Genetics, CNRS, and Melvin L. DePamphilis, National Institute of Child Health & Human Development, NIH

DNA replication is essential for the propagation of life on Earth. Cells in living organisms must be able to synthesize a complete copy of their DNA with extraordinary precision, so that they can pass this genetic material on to their descendants. DNA replication involves the coordinated interplay and regulation of many complex protein assemblies during the various stages of cell division. When these processes go awry, cancer and other diseases can ensue.

Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology covers all aspects of DNA replication and its control across all domains of life. The contributors examine the molecular machinery involved in the assembly of replication origin complexes, the establishment of replication forks, unzipping of the double helix, priming of DNA synthesis, and elongation of daughter strands. Chromatin organization and dynamics, lagging-strand maturation, telomere replication, and mechanisms to handle errors and damage in DNA are also discussed.

Including examination of the complex interactions between the core replication machinery and the regulatory circuits that drive cell cycle progression, this volume is an indispensable reference for not only biochemists and molecular biologists, but also cell biologists and all who want to understand this fundamental process of life.

CONTENTS
Preface
Dedication to Arthur Kornberg
In Memoriam
Principles and Concepts of DNA Replication in Bacteria, Archaea, and Eukarya
Michael O'Donnell, Lance Langston, and Bruce Stillman
DNA Replication Origins
Alan C. Leonard and Marcel Méchali
Dormant Replication Origins
Debbie Mcintosh and J. Julian Blow
Break-Induced DNA Replication
Ranjith P. Anand, Susan T. Lovett, and James E. Haber
Helicase Loading at Chromosomal Origins of Replication
Stephen P. Bell and Jon M. Kaguni
Helicase Activation and Establishment of Replication Forks at Chromosomal Origins of Replication
Seiji Tanaka and Hiroyuki Araki
The Minichromosome Maintenance Replication Helicase
Stephen D. Bell and Michael R. Botchan
Spatial and Temporal Organization of DNA Replication in Bacteria and Eukarya
Dean Jackson, Xindan Wang, and David Z. Rudner
DNA Replication Timing
Nicholas Rhind and David M. Gilbert
Replication-Fork Dynamics
Karl E. Duderdadt, Rodrigo Reyes-Lamothe, Antoine M. van Oijen, and David J. Sherratt
Replication Clamps and Clamp Loaders
Mark Hedglin, Raviendra Kumar, and Stephen J. Benkovic
Okazaki Fragment Metabolism
Lata Balakrishnan and Robert A. Bamburg
Chromatin and DNA Replication
David M. MacAlpine and Geneviève Almouzni
Sister Chromatid Cohesion
Jan-Michael Peters and Tomoko Nishiyama
Replicative DNA Polymerases
Erik Johansson and Nicholas Dixon
Translesion DNA Polymerases
Myron F. Goodman and Roger Woodgate
Rescuing Stalled or Damaged Replication Forks
Joseph T.P. Yeles, Jérôme Poli, Kenneth J. Marianni, and Philippe Pacero
Replication of Telomeres and the Regulation of Telomerase
Verena Pfeiffer and Joachim Lingner
Genomic Instability in Cancer
Tarek Abbas, Mignon A. Keaton, and Anindya Dutta
Replication Proteins and Human Disease
Andrew P. Jackson, Ronald A. Laskey, and Nicholas Coleman
Regulating DNA Replication in Bacteria
Kirsten Skarstad and Tsutomu Kitayama
Regulating DNA Replication in Eukarya
Khalid Siddiqui, Kin Fan On, and John E. Diffley

2013, 576 pp., illus. (88 4C, 33 B&W), appendices, index
Hardcover $135 £85
ISBN 978-1-936113-48-4

continued
DNA Replication

Regulating DNA Replication in Plants
Maria de la Paz Sanchez, Celina Costas, Joana Sequeira-Mendes, and Crisanto Gutierrez

Endoreplication
Norman Zielke, Bruce A. Edgar, and Melvin L. DePamphilis

Archaeology of Eukaryotic DNA Replication
Kira S. Makarova and Eugene V. Koonin

Human Mitochondrial DNA Replication
Ian J. Holt and Aurelio Reyes

Parovirus Diversity and DNA Damage Responses
Susan F. Cotmore and Peter Tattersall

Human Papillomavirus Infections: Warts or Cancer?
Louise T. Chow and Thomas R. Broker

Adenovirus DNA Replication
Rob C. Hoeben and Taco G. Uil

Herpes Simplex Virus DNA Replication
Sandra K. Weller and Donald M. Coen

Epstein-Barr Virus DNA Replication
Wolfgang Hammerschmidt and Bill Sugden

Poxvirus DNA Replication
Bernard Moss

Appendix
Table 1. Databases for identification of genes in different organisms
Table 2. Style conventions for gene and protein nomenclature
Table 3. Nomenclature for proteins and protein complexes in different organisms

Index
The Endoplasmic Reticulum

The endoplasmic reticulum (ER) is an extensive network of membranes that folds, modifies, and transports proteins in eukaryotic cells. It also manufactures lipids and interacts extensively with other organelles, playing essential roles in cell growth and homeostasis.

Written and edited by experts in the field, this collection from *Cold Spring Harbor Perspectives in Biology* covers all aspects of ER morphology and function, as well as its interactions with the nucleus, Golgi, and mitochondria. Contributors examine how proteins translocate across the ER membrane, the processes that occur inside the ER lumen (e.g., folding, glycosylation, and disulfide bond formation), and how the proteins are packaged into vesicles and transported to the Golgi. They also review quality-control mechanisms that are employed by the ER to detect and eliminate misfolded or unassembled proteins. Lipid synthesis and transport are also discussed.

This volume covers not only the biochemistry and cell biology of the ER, but also ER stress, metabolism, and the role of the ER in viral replication. Thus, it is an essential reference for cell biologists, physiologists, and pathologists interested in understanding the numerous functions of the ER.

2013, 336 pp., illus (61 4C, 9 B&W), index
Hardcover $135 £85

ISBN 978-1-936113-60-6

CONTENTS

Preface

Endoplasmic Reticulum Stress Sensing in the Unfolded Protein Response
Brooke M. Gardner, David Pincus, Katja Gottbhardt, Ciara M. Gallagher, and Peter Walter

Protein Folding Homeostasis in the Endoplasmic Reticulum and Nutritional Regulation
David Ron and Heather P. Harding

The Mammalian ERAD System
James A. Olzmann, Ron R. Kopito, and John C. Christianson

The ERAD Pathways of Budding Yeast
Guillaume Thibault and Davis T.W. Ng

Protein Folding in the Endoplasmic Reticulum
Ineke Braakman and Daniel N. Hebert

Disulfide Bond Formation in the Mammalian Endoplasmic Reticulum
Neil J. Bulleid

Endoplasmic Reticulum Structure and Interconnections with Organelles
Amber R. English and Gia K. Voeltz

Lipid Transport between the Endoplasmic Reticulum and Mitochondria
Vid V. Flis and Günther Daum

The Role of the Endoplasmic Reticulum in Peroxisome Biogenesis
Lazar Dimitrov, Sheung Kwan Lam, and Randy Schekman

How Viruses Use the Endoplasmic Reticulum for Entry, Replication, and Assembly
Takamasa Inoue and Billy Tsai

The Contribution of Systematic Approaches to Characterizing the Proteins and Functions of the Endoplasmic Reticulum
Maya Schuldiner and Jonathan S. Weissman

Cell Biology of the ER and the Golgi Apparatus through Proteomics
Jeffrey Smirle, Catherine E. Au, Michael Jain, Kurt Diggard, Tommy Nilson, and John J. Bergeron

Nonvesicular Lipid Transfer from the Endoplasmic Reticulum
Sina Lev

Sphingolipid Homeostasis in the Endoplasmic Reticulum and Beyond
David K. Breslow

ER Targeting and Insertion of Tail-Anchored Membrane Proteins by the GET Pathway
Vladimir Denic, Volker Dötsch, and Irmgard Sinning

Protein Translocation across the Rough Endoplasmic Reticulum
Elisabet C. Mandon, Steven F. Truemen, and Reid Gilmore

N-linked Protein Glycosylation in the Endoplasmic Reticulum
Jörg Breitling and Markus Aebi

The Highly Conserved COPII Coat Complex Sorts Cargo from the ER and Targets it to the Golgi
Christopher Lord, Susan Ferro-Novick, and Elizabeth A. Miller

Functional Insights from Studies on the Structure of the Nuclear Pore and Coat Protein Complexes
Thomas Schwartz

Expanding Proteostasis by Membrane Trafficking Networks
Darren M. Hutt and William E. Balch

Retrograde Traffic from the Golgi to the Endoplasmic Reticulum
Anne Spang

Index
Hemoglobin and Its Diseases

Edited by David Weatherall, Weatherall Institute of Molecular Medicine, Alan N. Schechter, National Institutes of Diabetes and Digestive and Kidney Disease of the National Institutes of Health, and David G. Nathan, Dana-Farber Cancer Institute

Hemoglobin is an iron-containing protein in red blood cells that transports oxygen to tissues throughout the body. The abundance, stability, and oxygen-carrying properties of hemoglobin can be altered by genetic mutations. More than one thousand hemoglobin disorders are known; hemoglobinopathies (e.g., sickle cell disease) and thalassemias are some of the most common human genetic diseases worldwide.

Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Medicine covers all aspects of hemoglobin and its diseases. Contributors examine the structure, expression, and evolution of the globin genes, the assembly of globin subunits into functional forms of hemoglobin, and the numerous variants that result from genetic alterations. The pathophysiological consequences of hemoglobin disorders (e.g., ineffective erythropoiesis and aberrant iron homeostasis), their clinical manifestations, and epidemiological trends are also described.

This volume includes discussions of management and treatment strategies for hemoglobin disorders, such as transfusions, iron-chelating agents, gene therapy, and stem cell transplantation. It is an indispensable reference for biochemists, geneticists, cell and developmental biologists, physiologists, and all who are interested in reducing the medical burden of these common genetic diseases.

2013, 445 pp., illus. (66 4C, 19 B&W), index
Hardcover $135 £85

CONTENTS
Preface
Hemoglobin and its Disorders: 150 Years of Study
David J. Weatherall, Alan N. Schechter, and David G. Nathan
Erythropoiesis: Development and Differentiation
Elaine Dzierzak and Sjaak Philipsen
Erythropoietin
H. Franklin Bunn
Evolution of Hemoglobin and its Genes
Rus C. Hardison
Transcriptional Mechanisms Underlying Hemoglobin Synthesis
Keichi R. Katsumura, Andrew W. Devibhis, Nathaniel J. Pope, Kirby D. Johnson, and Emery H. Bresnick
The Switch from Fetal to Adult Hemoglobin
Vijay G. Sankaran and Stuart H. Orkin
Iron Metabolism: Interactions with Normal and Disordered Erythropoiesis
Tomon Ganz and Elizabeth Nemeth
Erythroid Heme Biosynthesis and its Disorders
Harry A. Dailey and Peter N. Meissner
Classification of the Disorders of Hemoglobin
Bernard G. Forget and H. Franklin Bunn
World Distribution, Population Genetics, and Health Burden of the Hemoglobinopathies
Thomas N. Williams and David J. Weatherall
The Molecular Basis of Beta Thalassemia
Swee Lay Thein
The Molecular Basis of Alpha Thalassemia
Douglas R. Higg
Phathophysiology and Clinical Manifestations of the Beta Thalassemias
Arthur W. Nienhuis and David G. Nathan
Beta-Thalassemia Intermedia: A Clinical Perspective
Khaled M. Musallam, Ali T. Taber, and Elizezer A. Rachmilewitz
The Hemoglobin E Thalassemias
Suthat Fucharoen and David J. Weatherall
Clinical Manifestations of Alpha Thalassemia
Elliot P. Vichinsky
Alpha Thalassemia, Mental Retardation, and Myelodysplastic Syndrome
Richard J. Gibbons
Management of the Thalassemias
Nancy F. Olivieri and Gary M. Brittenham
The Prevention of Thalassemia
Antonio Cao and Yuet Wai Kan
The Natural History of Sickle Cell Disease
Graham R. Serjeant
The Search for Genetic Modifiers of Disease Severity in the Beta-Hemoglobinopathies
Guillaume Lettre
Current Management of Sickle Cell Anemia
Patrick T. McGann, Alecia Nero, and Russell E. Ware
Hematopoietic Stem Cell Transplantation in Thalassemia and Sickle Cell Anemia
Guido Lucarelli, Antonella Igrò, Pietro Sodani, and Javid Gaziev
continued
Hemoglobin and Its Diseases

Development of Gene Therapy for Thalassemia
Arthur W. Nienhuis and Derek A. Persons

Pluripotent Stem Cells in Research and Treatment of Hemoglobinopathies
Natasha Arora and George Q. Daley

Hemoglobin Variants: Biochemical Properties and Clinical Correlates
Christopher S. Thom, Claire F. Dickson, David A. Gell, and Mitchell J. Weiss

Cell Free Hemoglobin and its Scavenger Proteins: New Disease Models Leading the Way to Targeted Therapies
Dominik J. Schaer and Paul W. Buehler

Iron Deficiency Anemia: A Common and Curable Disease
Jeffry L. Miller

Index
Immune Tolerance

Edited by Diane J. Mathis, Harvard Medical School; Alexander Y. Rudensky, Howard Hughes Medical Institute and Memorial Sloan-Kettering Cancer Center

Immune tolerance ensures that the immune system responds to foreign molecules and not to self-molecules. When tolerance breaks down, severe, self-destructive diseases such as rheumatoid arthritis, lupus, and multiple sclerosis may develop. Understanding the mechanisms involved in establishing and maintaining immune tolerance is essential for effectively treating these autoimmune diseases.

Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology reviews how self-tolerant T- and B-cell populations are produced. The contributors discuss the elimination of autoreactive lymphocytes during their development in the thymus and bone marrow, the suppression of autoreactive cells by regulatory T cells in the periphery, and intrinsic mechanisms that produce clonal anergy. The roles of dendritic cells in antigen presentation and mechanisms that prevent autoreactivity in natural killer cells are also covered.

Including discussions of autoimmune diseases, their genetic bases, and therapeutic strategies, this volume is a valuable reference for all immunologists and clinicians wishing to understand or develop treatments for autoimmune diseases.

2013, 168 pp., illus. (2 B&W, 20 4C), index
Hardcover $135 £85

CONTENTS
Preface
Historical Overview of Immunological Tolerance
Ronald H. Schwartz
T Cell Tolerance: Central and Peripheral
Yan Xing and Kristin A. Hogquist
Treg Cells, Life History, and Diversity
Christophe Benoist and Diane Mathis
Dendritic Cells: Arbiters of Immunity and Immunological Tolerance
Kanako L. Lewis and Boris Reizis
Central B Cell Tolerance: Where Selection Begins
Roberta Pelanda and Raul M. Torres
NK Cell Tolerance: Control by Self or Self-Control?
Baptiste N. Jaeger and Eric Vivier

The Immunogenetic Architecture of Autoimmune Disease
An Goris and Adrian Liston
Environmental Factors: Commensals
Alexander V. Chervonsky
Infectious (Non)Tolerance—Frustrated Commensalism Gone Awry?
Jesse C. Nussbaum and Richard M. Locksley
Current and Future Immunomodulation Strategies to Restore Tolerance in Autoimmune Diseases
Jeffrey A. Bluestone and Hélène Bour-Jordan

Index
Mitochondria

Edited by Douglas C. Wallace, *Children’s Hospital of Philadelphia, University of Pennsylvania,* and Richard J. Youle, *National Institute of Neurological Disorders and Strokes, Porter Neuroscience Research Center*

Mitochondria are subcellular organelles that function as ‘power plants’ for the cell, generating energy in the form of ATP from glucose, oxygen, and other molecules. Thought to have arisen about 2 billion years ago when an aerobic bacterium invaded the primitive eukaryotic cell, they have their own DNA, undergo fission and fusion independently, and play an important role in programmed cell death.

Written and edited by experts in the field, this collection from *Cold Spring Harbor Perspectives in Biology* discusses the evolution of mitochondria, their functions in cells, and the numerous diseases in which mitochondrial dysfunction is implicated. The contributors also examine mitochondrial biogenesis, the molecular mechanisms underlying fission and fusion, how proteins are imported from the cytoplasm, and the organization of the mitochondrial DNA.

This book includes chapters covering the involvement of mitochondria in Parkinson’s disease, encephalopathies, tumorigenesis, muscular dystrophy, and other diseases, as well as aging. It is thus a vital reference for all cell and molecular biologists, as well as researchers working on muscle and neurodegenerative diseases, the role of metabolism in aging, and cancer.

Due November 2013, 300 pp. (approx.), illus., index
Hardcover $135 £85

CONTENTS (preliminary)

Preface

Mitochondrial Evolution
Michael W. Gray

Mechanisms of Protein Sorting in Mitochondria
Diana Stojanowski, Maria Bohmert, Nikolaus Pfanner, and Martin van der Laan

Mitochondrial Biogenesis through Activation of Nuclear Signaling Proteins
John E. Dominy and Pere Puigserver

Mechanisms of Mitochondrial Fission and Fusion
Alexander M. van der Bieck, Qinfang Shen, and Sumihiro Kawajiri

MtNDA Segregation
Douglas C. Wallace

Relevance of Mitochondrial Genetics and Metabolism in Cancer Development
Giuseppe Gasparre, Anna Maria Porcelli, Girogio Lenaz, and Giovanni Romeo

Mitochondrial Metabolism, Sirtuins, and Aging
Michael N. Sack and Toren Finkel

Clinical and molecular features of POLG-related mitochondrial disease
Jeffrey D. Stumpf, Russell P. Saneto, and William C. Copeland

The Mitochondrial Nucleoid: Integrating Mitochondrial DNA into Cellular Homeostasis
Robert Gillerson, Liliana Bravo, Israel Garcia, Norma Gaytan, Alicia Maldonado, and Brenda Quintanilla

Mitochondrial Quality Control Mediated by PINK1 and Parkin: Links to Parkinsonism
Derek Narendra, John E. Walker, and Richard Youle

Altered Sulfide (H2S) Metabolism in Ethylmalonic Encephalopathy
Valeria Tiranti and Massimo Zeviani

Mitochondrial Iron-Sulfur Protein Biogenesis: Mechanism, Connected Processes, and Diseases
Oliver Stehling and Roland Lill

Mitochondrial Trafficking in Neurons
Thomas L. Schwarz

Mitochondrial Dysfunction and Defective Autophagy in the Pathogenesis of Collagen VI Muscular Dystrophies
Paolo Bernardi and Paolo Bonaldo

Where Killers Meet—Permeabilization of the Outer Mitochondrial Membrane During Apoptosis
Tom Bender and Jean-Claude Martinou

Index
Signaling by Receptor Tyrosine Kinases

Edited by Joseph Schlessinger, Yale University School of Medicine and Mark A. Lemmon, University of Pennsylvania School of Medicine

Receptor tyrosine kinases are a large family of cell-surface receptors that respond to a variety of intercellular signals, including insulin, growth factors such as epidermal growth factor (EGF) and fibroblast growth factor (FGF), and molecules involved in neuronal guidance. Ligand binding stimulates the tyrosine kinase activity of the receptors, leading to recruitment of enzymes and adapter proteins that activate intracellular signaling pathways that control cell proliferation, differentiation, and numerous other biological processes.

Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology discusses the mechanisms underlying receptor tyrosine kinase signaling, including ligand processing, receptor dimerization, receptor trafficking, and the roles of adapters. The contributors also survey the specific functions of the different subfamilies of receptors and examine their many roles in development and normal physiology.

In addition, the authors review the important roles of these proteins in insulin resistance and cancer. This volume is thus a vital reference for cell and developmental biologists as well as those working on cancer biology, diabetes, and obesity.

Due November 2013, 300 pp. (approx.), illus., index
Hardcover $135 £85

CONTENTS (preliminary)
Preface
I. Introduction: Historical Perspectives
History of Receptor Tyrosine Kinases
Joseph Schlessinger and Mark A. Lemmon

II. Molecular Mechanistic Principles of RTK Signaling
Tyrosine Phosphorylation
Tony Hunter
The Insulin Receptor: Both a Prototypical and Typical Receptor Tyrosine Kinase
Stevan R. Hubbard
Structure-Function Relationships of ErbB RTKs in the plasma Membranes of Living Cells
Donna J. Arndt-Jovin and Thomas M. Jovin
Receptor Tyrosine Kinases in the Nucleus
Graham Carpenter and Hong-Jun Liao

III. Principles of Cellular Signaling by RTKs
Molecular Mechanisms of SH2- and PTB-DomainContaining Proteins in Receptor Tyrosine Kinase Signaling
Melany J. Wagner, Melissa M. Stacey, Bernard A. Liu, and Tony Pawson
Regulation of Receptor Tyrosine Kinase
Ligand Processing
Colin Adrian and Matthew Freeman

Biological Function of Nuclear Receptor Tyrosine Kinase Action
Sungmin Song, Kenneth M. Rosen, and Gabriel Corfas
Endocytosis of Receptor Tyrosine Kinases
Lai Kuan Goh and Alexander Sorokin
Effects of Membrane Trafficking on Signaling by Receptor Tyrosine Kinases
Marta Miaczynska
Complexity of Receptor Tyrosine Kinase Signal Processing
Natalia Volinsky and Boris N. Kholodenko

IV. RTKs in Development
Receptor Tyrosine Kinases in Drosophila Development
Richelle Sapko and Norbert Perrimon
Biology of the TAM Receptors
Greg Lenke

V. Specific Characteristics of Key RTK Families
Structural and Functional Properties of Platelet-Derived Growth Factor and Stem Cell Factor Receptors
Carl-Henrik Heldin and Johan Lennarsson
VEGFR and Type-V Receptor Tyrosine Kinase Activation and Signaling
Masahumi Shibuya

continued
Signaling by Receptor Tyrosine Kinases

Advances in the Molecular Mechanisms of FGF Signaling in Physiology and Pathology
Artur A. Belov and Moosa Mohammadi

Structure and Physiology of the RET Receptor Tyrosine Kinase
Carlos F. Ibáñez

Tie2 and Eph Receptor Tyrosine Kinase Activation and Signaling
William A. Barton, Annamarie C. Dalton, Tom C.M. Seegar, Juha P. Himanen, and Dimitar B. Nikolov

Eph Receptor Signaling and Ephrins
Erika M. Lisabeth, Giulia Falivelli, and Elena B. Pasquale

The Role of Ryk and Ror Receptor Tyrosine Kinases in Wnt Signal Transduction
Roel Nusse, Jennifer Green, and Renée van Amerongen

VI. RTKS in Disease and Medicine
Receptor Tyrosine Kinase-Mediated Angiogenesis
Michael Jelisić, Veli-Matti Leppänen, Pipsa Saharinen, and Kari Alitalo

Insulin Receptor Signaling in Normal and Insulin Resistant States
Jérémie Boucher, André Kleinridders, and C. Ronald Kahn

MET: A Critical Player in Tumorigenesis and Therapeutic Target
Carrie R. Graveel, David Tolbert, and George F. Vande Woude

Central Role of RET in Thyroid Cancer
Massimo Santoro and Francesca Carlomagno

Index
Transplantation

Edited by Laurence A. Turka, Harvard Medical School and Kathryn J. Wood, University of Oxford

The transplantation of organs such as the heart, kidney, and lungs is an important means of replacing seriously damaged or diseased body parts. However, a transplanted organ may fail if the recipient’s immune system mounts a response to it. Transplant patients are usually prescribed a life-long course of immunosuppressive medication, but these drugs can have adverse effects, including increased risk of infection and cancer.

Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Medicine provides a current and comprehensive review of the molecular mechanisms behind graft rejection and how they may be overcome. Contributors discuss immunosuppressive drug therapies and tolerance induction strategies, including the use of regulatory T cells, mesenchymal stromal cells, and lymphodepletion. They describe how mouse and non-human primate models have been used to gain insight into the immunobiology of transplantation and to test therapeutic approaches. Clinical considerations, such as donor selection, organ preservation, surgery, and post-operative care, are also covered.

This volume includes discussion of the emerging field of regenerative medicine and the bioethical issues surrounding organ transplantation, and provides historical background to the field. It is an essential reference for immunologists, pharmacologists, clinicians, and all who are working to improve this remarkable medical procedure.

Due December 2013, 300 pp. (approx.), illus., index
Hardcover $135 £85 ISBN 978-1-936113-88-0
Transplantation

Clinical Overview of Lung Transplantation
Jonathan C. Yeung and Shaf Keshavjee

Heart Transplantation and Organ-Specific Differences in Rejection and Tolerance
Makoto Tonsho, Sebastian Michel, Zain Ahmed, Alessandro Alessandrini, and Joren C. Madsen

Clinical Aspects: Focusing on Key Unique Organ Specific Issues—Renal Transplantation
Sindhu Chandran and Flavio Vincenti

Facial and Hand Allotransplantation
Bohdan Pomahac, Ryan M. Gobble, and Stefan Schneeberger

Opportunistic Infections—Coming to the Limits of Immunosuppression?
Jay A. Fishman

Cancer in the Transplant Recipient
J.R. Chapman, A. C. Webster, and G. Wong

Bioethics of Organ Transplantation
Arthur Caplan

Future Outlook
Will Regenerative Medicine Replace Transplantation?
Giuseppe Orlando, Shay Soker, Robert J. Stratta, and Anthony Atala

Index
INDEX (Subject Areas)

Bacteria
- Bacterial Pathogenesis

Biochemistry
- Antibodies: A Laboratory Manual, 2nd ed.
- Calcium Techniques: A Laboratory Manual
- Cystic Fibrosis
- DNA Repair, Mutagenesis, and Other Responses to DNA Damage
- DNA Replication
- Introduction to Protein-DNA Interactions
- Mitochondria
- Purifying and Culturing Neural Cells: A Laboratory Manual
- Signal Transduction

Bioinformatics
- Introduction to Protein-DNA Interactions
- Next-Generation DNA Sequencing Informatics

Biotechnology
- Antibodies: A Laboratory Manual, 2nd ed.
- Genome Science

Cancer and Oncogenes
- Blue Skies and Bench Space
- The Endoplasmic Reticulum
- Mouse Models of Cancer: A Laboratory Manual

Cell Biology
- Calcium Techniques: A Laboratory Manual
- Cell Survival and Cell Death
- The Endoplasmic Reticulum
- Mammalian Development
- Mitochondria
- Purifying and Culturing Neural Cells: A Laboratory Manual
- Signaling by Receptor Tyrosine Kinases
- Signal Transduction

Developmental Biology
- Cell Survival and Cell Death
- The Endoplasmic Reticulum
- Mammalian Development
- Mouse Models of Cancer: A Laboratory Manual
- Signaling by Receptor Tyrosine Kinases
- Signal Transduction

Ecology and Environment
- The Biology of Plants

Ethics, Eugenics, and Biology in Society
- The Dawn of Human Genetics

Evolution
- The Biology of Plants

Genetics and Genome Science
- DNA Repair, Mutagenesis, and Other Responses to DNA Damage
- DNA Replication
- Genome Science
- Next-Generation DNA Sequencing Informatics

History of Science
- Blue Skies and Bench Space
- The Dawn of Human Genetics

Human Biology & Disease
- Cystic Fibrosis
- Hemoglobin and Its Diseases
- Immune Tolerance
- Transplantation

continued
INDEX (Subject Areas)

Immunology, Vaccines, and Therapeutic Proteins
- Bacterial Pathogenesis
- Cell Survival and Cell Death
- Immune Tolerance
- Signal Transduction
- Transplantation

Laboratory Manuals/Handbooks
- Antibodies: A Laboratory Manual, 2nd ed.
- Calcium Techniques: A Laboratory Manual
- Genome Science
- Lab Math, 2nd ed.
- Mouse Models of Cancer: A Laboratory Manual
- Purifying and Culturing Neural Cells: A Laboratory Manual

Medical Science
- Bacterial Pathogenesis
- Cystic Fibrosis
- Hemoglobin and Its Diseases
- Transplantation

Microbiology
- Bacterial Pathogenesis

Molecular Biology
- Antibodies: A Laboratory Manual, 2nd ed.
- Cell Survival and Cell Death
- DNA Repair, Mutagenesis, and Other Responses to DNA Damage
- DNA Replication
- Genome Science
- Introduction to Protein-DNA Interactions
- Mammalian Development
- Mitochondria
- Mouse Models of Cancer: A Laboratory Manual
- Next-Generation DNA Sequencing Informatics
- Signaling by Receptor Tyrosine Kinases
- Signal Transduction

Neurobiology
- Purifying and Culturing Neural Cells: A Laboratory Manual

Proteins and Proteomics
- The Endoplasmic Reticulum

Plant Biology
- The Biology of Plants

Structural Biology
- Introduction to Protein-DNA Interactions
Cold Spring Harbor Laboratory Press now outsources book order processing and warehouse operations to Oxford University Press (OUP) in Cary, NC. Billing and shipping will originate from OUP.

TO ORDER CSHL PRESS BOOKS:

Visit: www.cshlpress.org
E-mail: orders@cshl.edu
Call: 1-855-452-6793

Cold Spring Harbor Laboratory Press now outsources book order processing and warehouse operations to Oxford University Press (OUP) in Cary, NC. Billing and shipping will originate from OUP.

FOR INFORMATION REGARDING CSHL JOURNAL SUBSCRIPTIONS:

Visit: www.cshlpress.org
E-mail: cspress@cshl.edu
Call: 1-800-843-4388 or 516-422-4100
Write: CSHL Press
 500 Sunnyside Boulevard
 Woodbury, NY 11797-2924

Support Research and Save on Books—Join Our Discount Program!

Did you know that buying directly from CSHL Press enables you to save money on any title we publish? As a member of our Discount Program, you will enjoy prices that are frequently lower than those of any other online book site.

Program benefits for individuals include:

• A 10% discount, in addition to other promotional discounts, on all web orders (individuals only)
• Free shipping to US & Canada
• Advance notice of new publications
• Exclusive special offers and online prices.

Regardless of where you make your purchase, all revenue from sales of CSHL Press publications supports research at Cold Spring Harbor Laboratory.