Index

Page references followed by f denote figures; those followed by t denote tables.

A
Abazyme, LLC, 424
Accuracy, ELISA, 641
Acidic stripping buffer (recipe), 528
Acids


Amino acids, 780t
Amino-terminal regions, coupling to, 54 Aminopterin, 205, 218, 316 Amines

Anaphylactic shock, 122
Anesthesia. See also specific anesthetic agents choice of, 112, 113t depth of, 112, 138 protocols for mice, rats, and hamsters, 136–138, 137f for rabbits, 139–141

Antibody
Antibody (Continued)
Antigen binding, 353–361
antibody specificity, 353–354
antigenic epitopes, 354–357, 356f
complementarity determining regions (CDRs), 357–358
Antigen-binding sites
diversity of, 17
structure of, 10–11, 11f, 12, 14, 21–22, 22f
Antigen capture
overview of, 210f, 213–214
protocols
on nitrocellulose membrane: reverse dot blot, 261–262
in solution: immunoprecipitation, 263
in 96-well plates (capture or sandwich ELISA), 258–260
Antigen dialysis buffer (recipe), 80
Antigen electrophoresis buffer (recipe), 80
Antigenicity
defined, 2
predicting, 51–52
Antigenicity prediction software, 51
Antigen modification, 61–64
coupling antigens, 62–64
to beads, 63
bifunctional cross-linkers, 50f
haptens, 50
immune complexes as antigens, 63–64
to protein carriers, 62
Antigen selection, 43–106
questions to ask, 44
sources of immunogens, 49–61, 49t
Antigen selection
overview of, 210f, 213–214
structure of, 10–11, 11f, 12, 14, 21–22, 22f
Antigenic
biological safety procedures, 822–823
complementarity determining regions (CDRs), 357–358
imprinting, 361
predicting, 51–52
Antigenic epitopes
354–357, 356f
complementarity determining regions (CDRs), 357–358
Antigenicity prediction software, 51
Antigen selection, 43–106
Antigenic modification, 61–64
coupling antigens, 62–64
to beads, 63
bifunctional cross-linkers, 50f
haptens, 50
immune complexes as antigens, 63–64
to protein carriers, 62
Antigen selection, 43–106
Antigenic modification, 61–64
immunogenicity, 44–49
failure of animal to respond, 46–47
polyclonal versus monoclonal antibodies, 47–48, 471
properties of good immunogens, 45–46, 48f
selecting the antigen and, 48, 49t
synthetic class II–T-cell receptor sites, 47t
Antigenic modification, 61–64
Antigenic modification, 61–64
immunogenicity, 44–49
failure of animal to respond, 46–47
polyclonal versus monoclonal antibodies, 47–48, 471
properties of good immunogens, 45–46, 48f
selecting the antigen and, 48, 49t
synthetic class II–T-cell receptor sites, 47t
Antigenic modification, 61–64
Antigens
Bacterial expression, 809–818
maps
β-gal fusion vectors, 815f
gateway expression vectors, 817f
AgT11, 812f
pcDNA 3.1, 816f
pDEST 8, 818f
pDEST 15, 817f
pDEST 27, 817f
pET-SUMO, 816f
pFastBac1, 816f
plasmids, 813f–818f
Trp fusion vectors, 814f
T7 vectors, 813f
screening for
chloroform lysis, 811
SDS lysis, 810
systems, 55–56, 57f, 58, 58t
Bacterial expression vectors, preparing
antigens from, 55–56, 56t, 57f
Bacterial expression systems, 57f, 58–59, 58t
antigen preparation using (protocol), 101–103
Bacterial overexpression vectors, preparing
antigens from, 55–56, 56t, 57f
Bacterial expression systems, 57f, 58–59, 58t
antigen preparation using (protocol), 101–103
materials, 101
protein expression and purification, 103
transfection of S9 cells and virus stock generation, 101–102
viral titer and plaque assay, 102–103
virus stock harvest and amplification, 102
Cells

Cell repositories, 309–310, 325–329
mycoplasma, 310–313, 311t–312t, 330–343
testing for (protocols), 325–329, 340–343
counting myeloma or hybridoma cells (protocol), 318–319, 319f
detector lysis of tissue culture cells (protocol), 565–567

Drug selection, 316–317, 349
freezing cells for liquid nitrogen storage (protocol), 321–322
media, 304–307, 305t–306t
recovery of cells from liquid nitrogen storage (protocol), 323–324
sending and receiving hybridomas and myelomas, 309
storage of, 309, 321–324

Cell lysis

Overview, 534–537
Lysing yeast cells with glass beads (protocol), 571–574
Lysing yeast cells using a coffee grinder (protocol), 582–584
Freezing cell pellets for large-scale immunoprecipitation (protocol), 563–564
Lyzing yeast cells using a coffee grinder (protocol), 583–585

Cell lysis for immunoprecipitation

denaturing lysis (protocol), 588–590
detergent lysis of animal tissues (protocol), 568–570
detergent lysis of tissue culture cells (protocol), 565–567
differential detergent lysis of cellular fractions (protocol), 575–578
Freezing cell pellets for large-scale immunoprecipitation (protocol), 563–564

Cell lysis

lyzing yeast cells using a coffee grinder (protocol), 583–585
lyzing yeast cells with glass beads (protocol), 579–581
using lysis buffer 2 without detergents (protocol), 582–584
Lysis using dounce homogenization (protocol), 571–574
overview, 534–537
Lysozyme buffers, 534–535
Lysis of tissue, 536–537
Lysis of tissue culture cells, 535–536

Cell lysis

lyzing yeast cells using a coffee grinder (protocol), 583–585
lyzing yeast cells with glass beads (protocol), 579–581
using lysis buffer 2 without detergents (protocol), 582–584
Lysis using dounce homogenization (protocol), 571–574
overview, 534–537
lysis buffers, 534–535
lysing of tissue, 536–537
lysing of tissue culture cells, 535–536
lysing of yeast, 537
protease inhibitor use, 535, 536t
protocols, 565–590
Cell permanen dye, 742–743
Cell repositories, 309
Cells

cultures of (see Cell cultures) as immunogen source, 49f, 59–60
mouse antibody production (MAP) tested, 60
staining (see Cell staining)

Cell smear

preparation (protocol), 690
preparing from tissue samples or cell cultures (protocol), 700

Cell staining

875–733
antibody choice for, 677–678, 677t
monoclonal antibodies, 677t, 678
polyclonal antibodies, 677–678, 677t
major constraints, 676
overview, 675
protocols, 686–733
attaching suspension cells to slides using cytocentrifuge, 688
using poly-L-lysine, 689
attaching yeast cells to slides using poly-L-lysine, 691–692
binding antibodies
to attached cells or tissues, 709–710
to cells in suspension, 711–712

Cell staining

Cell surface receptor internalization, 216f
Chosing medium (recipe), 556
Chemically defined medium, 304, 307f
Chemicals, properties of common hazardous, 823–824
Chiminifluorescent substrates, ELISA, 638–639
Chimiluminescence
antigen detection on immunoblots, 522
reprobing membranes after immunoblotting, 526
substrates, ELISA, 638

Chickens

binding characteristics of Protein A, Protein G, and Protein L, 2121
IgY antibodies, 375–376, 397–400
isolation of IgY from chicken eggs: polyethylene glycol method (protocol), 399–400
isolation of IgY from chicken eggs: sodium sulfate method (protocol), 397–398

ChIP (chromatin immunoprecipitation). See Immunoprecipitation, chromatin

Chloroform lysis, screening for bacterial expression by, 811
Chloronaphtol, detecting horseradish peroxidase-labeled cells using (protocol), 716

Chromatin immunoprecipitation (ChIP). See Immunoprecipitation, chromatin

Chromatography. See specific chromatography types

Chromogenic antigen detection on immunoblots, 477, 522

Chromogenic substrates
ELISA, 637–638
yielding water-insoluble products, 797t
yielding water-soluble products, 797t

Chromosome loss in hybridomas, 205

Cibacron Blue F3GA, 375

Cimetidine, 116

Citroconic anhydride, 62

Citrates binding buffer (recipe), 98
Citrates elution buffer (recipe), 99

Classes of antibodies
characteristics of, 13t
subclasses, 10
switching, 18f, 19, 39, 233–234

Class II protein
antigen binding to, 35–36
diversity of, 36
structure, 34–35
Class switching, 18f, 19, 39, 233–234

Cleanup and purification of antibody conjugates, 464–468
affinity chromatography, 465
desalting or buffer exchange using size-exclusion chromatography (protocol), 467–468
dialysis, 465–466
ion-exchange chromatography, 464–465
overview, 464–466, 464t
reversed-phase chromatography, 465
size-exclusion chromatography, 464, 464t, 467–468

Clonal deletion, 5f, 6, 38
Clonal dominance, 127
Clonal selection, 4–6, 5f

Cloning

single-cell cloning by growth in soft agar, 288–289
single-cell cloning by limiting dilution, 286–287
CMye epitope tag, 539
Codon-optimized bacteria, 56
Codon usage, 783t–784t
Coffee grinder, lysing yeast cells using (protocol), 585–587

Coimmunoprecipitation, 532

© 2014 Cold Spring Harbor Laboratory Press
Colloidal gold, 455, 456–460
Colorimetric substrates, See Chromogenic substrates
Commercial liquids, concentrations of, 803t
Competition assays, for epitope binding, 355, 356f
Competitive ELISA
direct (protocol), 666–669, 666f
indirect (protocol), 670–673, 670f, 673f
Complementarity determining regions (CDRs),
Complementarity determining regions (CDR)
Competitive ELISA
Competition assays, for epitope binding, 355, 356f
Commercial liquids, concentrations of, 803t
Colloidal gold, 455, 459–460
Coupling antigens, 62–64
coupled antigens, pH of, 54
Coupling
choosing strategy for, 53–54
to multiple sites, 54
Coupling antigens, 62–64
to beads, 63
bifunctional cross-linkers, 50t
hapten, 50
immune complexes as antigens, 63–64
to protein carriers, 62
protocals
coupling to red blood cells, 72
modifying antigens by aznyl coupling, 67–68
modifying antigens by dinitrophenol coupling, 66
red to blood cells, 63
with T-cell receptor—MHC-class II protein-binding sites, 62–63
Coverslips, growing adherent cells on (protocol), 686
Cones
binding characteristics of Protein A, Protein G, and Protein L, 212t
IgG binding affinity for Proteins A, G, and L, 540t
CpG DNA, Magic, Mouse adherent and, 115, 146–147
Critical micelle concentration, 804
Cross-linkers
bifunctional, 50f, 62
removal of, 62
selection for labeling antibody, 431–433, 432l, 433t
amines/carboxyls, 431–432, 432t, 433t
carbohydrates (aldehydes), 432, 433t
sulphonyls, 432t, 433t
Cross-linking peptides to KLH with maleimide
Cross-reactivity, antibody, 6
Cutting devices, safe handling of, 821
Cyanoagen bromide, 377
Cyclophosphamide, in subtractive immunization
Cutting devices, safe handling of, 821
Cows
Coverslips, growing adherent cells on (protocol), 768
maximal sensitivity, 769
in fusion wells, 229–230
Coximmunization, 60
Cy5-phycoerythrin, labeling antibodies with, 452–454
Cysteine
maleimide linkage and, 34
metabolic labeling of antigens with [35S]methionine (protocol), 546–551
Cytocentrifuge, attaching suspension cells to slides using (protocol), 688
Cytokines, 37, 38h
Cytometric Bead Assay (CBA), 232, 300
Cytotoxicity
antibody-dependent cellular cytotoxicity (ADCC) by flow cytometry (protocol), 751–754, 753f–754f
complement-dependent cytotoxicity assay (protocol), 747–748, 748f
D
DAB
DAB. See Diamobenzidine
DAB substrate solution for HRP (recipe), 523
DAPL properties of, 723t
David’s life chart II, 788t
DCC (dicyclohexylcarbodiimide), 431–432
Dicyclohexylcarbodiimide (DCC), 431–432
DEAE Affi-Gel Blue (Bio-Rad), 374–375
DEAE-agarose, 455
Dibutyl phthalate
Diaminobenzidine (DAB)
Diaminobenzidine (DAB) solution (recipe), 257
Diamobenzidine (DAB)
Diamobenzidine (DAB) solution (recipe), 257
Dialysis tubing preparation, 795
Dialysis for cleanup and purification of antibody conjugates, 465–466
Dialysis tubing preparation, 795
Diamobenzidine (DAB)
detecting horseradish peroxidase-labeled cells using (protocol), 713–714, 714f
detecting horseradish peroxidase-labeled cells using diamobenzidine and metal salts (protocol), 715
Diamobenzidine (DAB) solution (recipe), 257
Dibutyl phthalate
mounting cell or tissue samples in DPX (protocol), 730
Dicyclohexylcarbodiimide (DCC), 431–432
Diethylene triamine pentaacetic acid (DTPA), 455
Digital imaging, 733
Dimethyl pimelidate (DMP), crossing antigen
Densitometry, 389–390
Dendritic cells, 2, 2f, 4, 33–34, 34f
Digital imaging, 733
Dimethyl sulfoxide (DMSO), 55, 309
Dinitrophenol coupling, modifying antigens by
Dimethyl pimelidate (DMP), cross-antibodies to beads using, 591, 592f, 593–596
Dimethyl pimelidate (DMP), cross-antibodies to beads using, 591, 592f, 593–596
Dimethyl sulfoxide (DMSO), 55, 309
Dinitrophenol coupling, modifying antigens by
Detecting β-galactosidase-labeled cells using X-gal (protocol), 721
Detecting fluorochrome-labeled reagents, 722–724
detecting gold-labeled reagents, 725–726
detecting horseradish peroxidase-labeled cells using aminooxyacarbazole, 717
using chloronaphthol, 716
using diaminobenzidine, 713–714, 714f
using diaminobenzidine and metal salts, 715
detecting iodine-labeled reagents, 727–728
Detergent lysis of animal tissues (protocol), 568–570
differential of cellular fractions (protocol), 575–578
tissue culture cells (protocol), 565–567
Detergents
amphoteric, 805, 806f
critical micelle concentration, 804
described, 804
diethylphosphate-lipophile balance (HLB), 804
ionic, 805, 806f
michelle molecular weight, 804
nonionic, 805, 806t
properties of commonly used, 806f
removal of, 805
Developing solution for AP (recipe), 239, 241
Developing solution for Brep-AP (recipe), 259
Developmental Studies Hybridoma Bank, 309
Dialysis for cleanup and purification of antibody conjugates, 465–466
Dielysis tubing preparation, 795
Diamobenzidine (DAB)
detecting horseradish peroxidase-labeled cells using (protocol), 713–714, 714f
detecting horseradish peroxidase-labeled cells using diaminobenzidine and metal salts (protocol), 715
substrate for horseradish peroxidase, 519, 522
Diamobenzidine (DAB) solution (recipe), 257
Dibutyl phthalate
mounting cell or tissue samples in DPX (protocol), 730
Dicyclohexylcarbodiimide (DCC), 431–432
Diethylamine triamine pentacetic acid (DTPA), 455
Digital imaging, 733
Digitonin, in differential detergent lysis of cellular fractions (protocol), 575–576
Digitonin extraction buffer (recipe), 577
Dimethyl pimelidate (1×) (recipe), 596
Dimethyl pimelidate (DMP), cross-antibodies to beads using, 591, 592f, 593–596
Dimethyl sulfoxide (DMSO), 55, 309
Dinitrophenol coupling, modifying antigens by
Direct ELISA
advantages and disadvantages, 633f
antibody capture assay, 211f
cell-based ELISA, 661–665, 663f–664f
direct competitive ELISA, 666–669, 666f
sandwich ELISA, 652f
Disposal
general cautions, 819–821
of laboratory waste, 821
Distrene
mounting cell or tissue samples in DPX (protocol), 730
© 2014 Cold Spring Harbor Laboratory Press
Enzyme-linked immunosorbent assay (ELISA) 
(Continued)
screening for phospho-specific antibodies, 214 
substrates, 637–639 
chemiluminescent, 638–639 
chemiluminescence, 638 
chroomogenic (colorimetric), 637–638 
troubleshooting guide, 647–648 
types, 642–643 
validation parameters, 640–642, 640t 
accuracy, 641 
limit of detection (LoD), 641 
linearity, 641 
precision, 640 
quantiﬁcation limit (LoQ), 641 
range, 642 
sensitivity, 641 
speciﬁcity, 642 
wash buffers, 636 
Enzyme-linked immunosorbent spot (ELISPot) assay, 651 
Epinephrine, for anaphylactic shock, 122 
Eptiope 
amino acid mobility an, 52 
antitype speciﬁcity and, 353–354 
binding competition assays, 355, 356f 
β-turns in, 52 
choosing between recombinant proteins and 
peptides for immunogen 
production, 57 
conformational, 354–355 
described, 6, 354–357 
discontinuous, 57 
functional, 355 
heat-induced epitope retrieval (protocol), 698–699 
linear, 354–355 
mapping, 355–357 
processed antigen fragments, 35–36 
size of, 22, 53 
structure, 355 
structure of, 22–23 
tags in immunoprecipitation, 539 
Eptiote retrieval, heat-induced (protocol), 698–699 
Epstein–Barr virus (EBV), 234 
Equilibrium dialysis to obtain afﬁnity constants 
for antibodies, 358 
Escherichia coli 
electroconnection of cDNA into, 418–419 
for recombinant protein expression, 58, 58t 
Ethanolamine, 593–594 
Ethanolamine (1 ×) (recipe), 596 
Ethyl(dimethylaminopropyl) carbodiimide 
(EDC), 431–432 
Europium, labeling antibodies with, 457–458 
Eutanasia 
killing mice, rats, and hamsters using carbon 
dioxide asphyxiation (protocol), 194–195 
ExactSTART, 410 
ExPASy, 51 
Exsanguination, 129 
Extracellular proteins, designing peptides against 
highly homologous, 53 

F 
Fab, 14 
fragments, 10, 11f 
puriﬁcation of Fab and F(ab’2) 
fragments, 376 

FACS 
intracellular staining by, 249–250 
isoyping and, 561 
surface staining by ﬂow cytometry/FACS, 246–248 
FACS buffer (recipe), 745 
FastPrep Cell Disruptor, 580 
Fast protein liquid chromatography (FPLC), 373–374 
FBS. See Fetal bovine serum 
Fc-binding proteins, human isotype classes and, 363 
Fc domains, immunoglobulin isotypes and, 363–364, 365f 
Fc fragments, 10–11, 11f 
FcRn (neonatal Fc receptor), 236 
Feeder cells 
ﬁbroblast feeder cell culture preparation (protocol), 596 

Fc fragments, 10–11, 11f 

Fc domains, immunoglobulin isotypes and, 363–364, 365f 
FcRn (neonatal Fc receptor), 236 
Feeder cells 
fibroblast feeder cell culture preparation (protocol), 271 
splenocyte feeder cell culture preparation (protocol), 269–270 
Feeder plate preparation, 218 
myeloma cell, 267–268 
Fentanyl for anesthesia, 112, 140 

Fluorescence. See also Flow cytometry; speciﬁc 
protocols 
chemiluminescent substrates, ELISA, 638–639 
immunoﬂuorescence 
abody capture on permeabilized 
whole cells, 253–254 
surface staining by, 251–252 
quenching, 733 
Fluorescent proteins 
protein–antibody conjugate formation, 448–449, 452–454 
Fluorescent resonance energy (FRET) dyes, 448–449, 452–453 
Fluorochromes. See also Fluorochromes 
choosing correct, 723–724 
detecting ﬂuorochrome-labeled reagents in 
stained cells, 722–724 
for detection of antigen on immunoblots, 519–520, 525 
excitation and emission spectra of, 723, 736, 736f 
fluorochrome-labeled secondary reagents for 
immunoblotting, 478 
fluorochrome-labeled streptavidin, 516–517 
properties of, 723t 
reprobing membranes after immunoblotting, 326 
Fluorography, 766, 775 
Fluophores. See also Fluorochromes 
labeling antibodies with, 442–447 
overall, 442–443, 442t 
using a maleimido dye (protocol), 446–447 
using NHS–flourescin (protocol), 444–445 
lit ofﬂuorophores, 442t 
Footpad immunization, 123 
of mice, rats, and hamsters (protocol), 168–169, 169f 
Footprinting, antibody, 356 
Formaldehyde, for cross-linking proteins to 
DNA, 614, 617–618, 625–626 
Formaldehyde solution (25%) (recipe), 623 
FPLC (fast protein liquid chromatography), 373–374 
Fragmenting a wet gel slice (protocol), 77 
Freezing 
cell pellets for large-scale 
immunoprecipitation (protocol), 563–564 
cells for liquid nitrogen storage, 321–322 
for storage of hybridomas, 309 
FRET (fluorescent resonance energy) dyes, 448–449, 452–453 
Fred’s adjutant, 113, 114–115 
advantages and disadvantages of, 114t 
asites induction using Fred’s adjutant 
(protocol), 182 
Complete, 113, 114, 142
Index

Hoechst dye 33258 staining properties of fluorochrome, 723t
testing for mycoplasma contamination by, 332–333, 333f
Hollow-fiber reactors, 314–316, 315f
Homemade chemiluminescent substrate solution for HRP: solution A (recipe), 523
Homemade chemiluminescent substrate solution for HRP: solution B (recipe), 524
Homologous protein, designing peptides against, 53
Horseradish peroxidase (HRP) in antibody capture assays, 210–211, 232, 242–245
antibody conjugation to, 448, 450–451
in antigen capture assays, 261–262
in antigen detection on immunoblots, 519, 521–524
detecting horseradish peroxidase–labeled cells using aminoethylcarbazole, 717
using chloronaphthol, 716
using diaminobenzidine, 713–714, 714f
using diaminobenzidine and metal salts, 715
Horses
binding characteristics of Protein A, Protein G, and Protein L, 212t
IgG binding affinity for Proteins A, G, and L, 540t
Host cell protein (HCP) ELISA, 632, 655–656
HPLC (high-pressure liquid chromatography), 373–374
HPRT. See Hypoxanthine-guanine phosphoribosyl transfer (HPRT) gene
HRP. See Horseradish peroxidase
HT (hypoxanthine/thymidine) selection, 218, 224, 226
Human hybridomas, 234–235
Human isotype classes and associated Fc-binding proteins, 363t
Humanization technology, 235
Humans
binding characteristics of Protein A, Protein G, and Protein L, 212t
IgG binding affinity for Proteins A, G, and L, 540t
isotype classes and associated Fc-binding proteins, 363t
Hunter’s TiterMax adjuvant, 114t, 115, 145
HIV (hemagglutinating virus of Japan), 221, 226–227, 229–230
Hybridoma cloning supplements, 217
Hybridoma production
chromosome loss, 205
dlass-switching variants, selecting, 233–234
cloning of hybridoma cells, 228
contamination, dealing with, 229–231
of a cloned line, 230–231
common forms of contamination, 230f
in fusion wells, 229–230
expanding and freezing positive clones, 225–229, 227f
single-cell cloning, 228
unstable lines, 229
feeding hybridomas, 224
fusions, 220–222
elimination of unfused cells by drug selection, 205, 206f
overview of, 220–222
polyethylene glycol as fusing agent, 205, 222
Sendai virus use, 221
future trends, 235–236
injecting cells, 236
plating strategies, 222–224
bulk plating, 223
multiple cells per well, 223, 223f
single cell per well, 222–223, 222f
soft agar use, 224, 224f
preparation for fusions, 217–220
drug selections, 218
feeder layer plate preparation, 218
final boost, 218–220
hybridoma cloning supplements, 217
low-density growth supplements, 217
preparing myeloma cells for fusions, 219, 219f
preparing partner cells for fusions, 218–219
preparing spleenocytes for fusions, 219, 219f–221f
recombinant murine IL-6, 217
progression of hybridoma growth postfusion, 217f
screening method, 207–216, 225
antibody capture assays, 209–213, 210f–211f, 212t, 213f
antibody capture on nitrocellulose membrane: high-throughput western blot assay for hybridoma screening (protocol), 244–245
antigen capture assays, 210f, 213–214
characteristics of a good procedure, 207
development of, 207–216
examples of, 225
functional assays, 215–216
functional screens, 210f, 214–215
for blocking/neutralizing or activating antibodies, 215
for internalizing antibodies, 215, 216f
for phospho-specific antibodies, 214–215
pooling strategies, 225
supernatant collection strategies for screening, 224–225
timing of screening, 207
stages of, 207, 208f–209f
unstable, 205, 229
Hybridomas, growing, 303–352
cell culture, 304–309
antibiotics for, 304, 306f
long-term storage for, 309
media, 304–307, 305t–306f
sending and receiving hybridomas and myelomas, 309
suppliers of media, 307f
technique for, 307–308, 308f
contamination of cell cultures, 309–313
by bacteria, fungi, or yeast, 309–310
by mycoplasma, 310–313, 311t–312t
drug selection, 316–317
checking cell lines for HPRT deficiency, 316, 350–351
selecting HPRT mutants with 8-aza-guanine, 316–317, 349
monoclonal antibody production and storage, 313–316
collecting tissue culture supernatants, 313–314
comparison of methods, 313t
hollow-fiber reactors, 314–316, 315f
Integra CELLine 1000 flask, 314, 314f
preparing tissue culture supernatants with higher concentrations of antibody, 314–316, 314f–315f
roller bottles and large T-flasks, 314
overview, 303–317
protocols, 318–352
asctes induction and collection, 344–345
checking cell lines for HPRT deficiency, 350–352
collecting tissue culture supernatants, 346
counting myeloma or hybridoma cells, 318–319, 319f
freezing cells for liquid nitrogen storage, 321–322
recovering cells from liquid nitrogen storage, 323–324
ridding cell lines of contaminating microorganisms by antibiotics, 325–326
ridding cell lines of contaminating microorganisms with peritoneal macrophages, 327
ridding cells of mycoplasma contamination by passage through mice, 328–329
ridding cell lines of contaminating microorganisms by passage through mice, 342–343
ridding cells of mycoplasma contamination using antibiotics and single-cell cloning, 340–341
selecting myeloma cells for HPRT mutants with 8-aza-guanine, 349
storing tissue culture supernatants and asctes, 347–348
testing for mycoplasma contamination by growth on microbial media, 330–331, 331f

© 2014 Cold Spring Harbor Laboratory Press
testing for mycoplasma contamination
by Hoechst dye 33258 staining, 332–333, 333f

testing for mycoplasma contamination
using PCR, 334–337, 335f

testing for mycoplasma contamination
using reporter cells, 338–339, 339f

viability checks, 320

Hydrazide, 432, 433t

biotinylating antibodies using
hydrazide-LC-biotin (protocol), 440–441

Hydrazine, 377

Hydrophile-lipophile balance (HLB), 804

Hydrophilic peptides, advantages of, 52

Hydrophilic amino acid exposure on protein
surface, 52

Hydrophilic amino acids, 804

Hydroxysuccinimide. 

Hydroxylamine buffer (recipe), 447, 451

Hydroxylamine, 377

Hypoxanthine

Hypervariable regions, 14

Hyperimmunization, 126–127

HyperCyt, 738, 739t

Hydrazine

Immune complex.

See also

ImmunEasy adjuvant, 114t

2-Iminothiolane (Traut’s Reagent), 433

Iminodiacetic acid (IDA), 375

cDNA, 61, 192–193, 193f
decoy, 60, 190

live cell preparation (protocol), 100

subtractive, 60, 189

transfected dendritic cell immunizations
(protocol), 104–106

Immunization protocols
devising of, 131–132

protocols, 182–193

adaptive transfer immunization of
mice, 191

ascites induction in BALB/c mice using
myeloma cells, 183

ascites induction using Freund’s
adjuvant, 182

cDNA immunization mice, rats, and
hamsters, 192–193, 193f

decoy immunization for mice, rats, and
hamsters, 190

repetitive immunization at multiple sites
(RIMMS) of mice, rats, and
hamsters, 182–193

adoptive transfer immunization of
mice, 191

cDNA immunization mice, rats, and
hamsters, 192–193, 193f

decoy immunization for mice, rats, and
hamsters, 190

repetitive immunization at multiple sites
(RIMMS) of mice, rats, and
hamsters, 182–193

advantages and disadvantages of specific,
114t

aluminum hydroxide, 116

Freund’s, 114–115, 142–143, 143f

GERB, 116

Hunter’s TiterMax, 115, 146

Magic Mouse, 115, 146–147

overview of, 113–114

PAM3Cys-Ser-(Lys)4, 115–116

Rib, 115, 144

anesthesia, 112, 113t

proteins, 136–199

anesthesia and adjuvants, 136–149

administering anesthesia to mice, rats,
and hamsters, 136–138, 137f

administering anesthesia to rabbits, 139–141

aluminum hydroxide (alum)
adjuvant preparation, 148–149

Freund’s adjuvant preparation,
142–143, 143f

Hunter’s TiterMax adjuvant use, 145

Magic Mouse adjuvant use, 146–147

Ribi adjuvant use, 144

harvesting tissue, 194–199

collection of, 194–199

killing mice, rats, and hamsters using
carbon dioxide asphyxiation,
194–195

lymph node harvesting from mice, rats,
and hamsters, 198–199, 199f

spleen harvesting from mice, rats,
and hamsters, 196–197, 197f

immunization protocols, 182–193

adoptive transfer immunization of
mice, 188

ascites induction in BALB/c mice using
myeloma cells, 183

ascites induction using Freund’s
adjuvant, 182

cDNA immunization mice, rats, and
hamsters, 184–185

standard immunization of mice, rats, and
hamsters, 186–187

spleen harvesting from mice, rats,
and hamsters, 196–197, 197f

standard immunization of mice, rats, and
hamsters, 182–193

standard immunization of rabbits,
186–187

subcutaneous injection for mice, rats,
and hamsters, 188–189

standard immunization of rabbits,
186–187

subcutaneous injection for mice, rats,
and hamsters, 188–189

standard immunization of rabbits,
186–187

subcutaneous injection for mice, rats,
and hamsters, 188–189

routes of antigen injection, 150–169

footpad or bock immunization of
mice, rats, and hamsters, 168–169, 169f

immunizing mice and rats with
nitrocellulose-bound antigen,
154–156, 155f

intradermal injection in rabbits,
159–160, 160f

intramuscular injection in rabbits,
157–158, 158f

intraperitoneal injection with adjuvant
in mice and rats, 165, 165f

intraperitoneal injection without
adjuvant in mice and rats,
166–167, 166f–167f

intravenous injection in mice,
163–164, 164f

intravenous injection in rabbits,
161–162, 162f

subcutaneous injection in mice,
150–151

subcutaneous injection with adjuvant
into mice and rats, 152

subcutaneous injection without
adjuvant into mice and rats, 153

serum sampling and preparation,
170–181

sampling mouse and rat serum from
retro-orbital sinus, 175–176, 176f

© 2014 Cold Spring Harbor Laboratory Press
Immunizing animals, (Continued)

- sampling mouse and rat serum from saphenous vein, 179–180, 180f
- sampling mouse and rat serum from submandibular vein, 177–178, 177f
- choosing a protocol, 631t
- deciding where to start, 630
- ELISA parameters, 639–640, 639f
- ELISA validation parameters, 640–642, 640t
- accuracy, 641
- limit of detection, 641
- linearity, 641
- precision, 640
- quantification limit, 641
- range, 642
- sensitivity, 641
- specificity, 642
- indirect versus direct detection, 632, 633f
- microtiter plate selection, 632–635, 634f, 634t
- indirect competitive ELISA, 666–669, 666f
- immunometric antibody sandwich ELISA, 651–657, 655f, 654t, 655f–656f
- immunoassays prepared with whole-cell lysates and purified proteins (western blotting), 510–514
- overview, 509
- detection, 519–525
- enzyme-based, 519, 521–524
- with fluorochromes, 519–520, 525
- reprobing membrane after immunoblotting, 526–530
- overview, 526
- stripping the blot for reprobing, 527–530
- resolving proteins by gel electrophoresis, 490–496
- materials, 491–492
- method, 492–494
- overview, 490
- recipes, 495–496
- troubleshooting, 494–495
- sample preparation, 479–489
- preparing immunoprecipitations for immunoblotting, 487–489
- preparing protein solution for immunoblotting, 484–486
- preparing whole-cell lysates for immunoblotting, 480–483
- transfer of proteins from gels to membranes, 497–508
- overview, 497
- semi-dry electrophoretic transfer, 499–502, 500f
- staining the blot for total protein with Ponceau S, 507–508
- wet electrophoretic transfer, 503–506
- schematic of classical procedure, 470f
- steps in, 471
- strength of antibody binding, 25t
- Immunocruz series, 509
- Immunodepletion of serum, 379–381, 379f–380f, 382f
- Immunodiffusion. See Ouchterlony double-diffusion assays

Immunofluorescence
- antibody capture on permeabilized whole cells, 253–254
- surface staining by, 251–252

Immunoassays. See also Antigen(s)
- accumulation in lymphoid organ, 4
- chemical features of, 46
- coupling antigens, 50f, 62–64
- defined, 2
- form for immunizing animals, 118–119
- carbohydrates, 117t, 118t, 119
- dose of antigen, 116–118, 117t, 118t
- insoluble proteins, 117t, 118–119, 118t
- live cells, 117t, 118t, 119
- nucleic acids, 117t, 118t, 119
- particulate proteins, 117t, 118t
- recombinant proteins, 119
- soluble proteins, 117t, 118, 118t
- synthetic peptides, 119
- properties of good, 45–46, 46f
- size limit, 45, 53
- sources of, 46–61, 49t
- cDNA, 49t, 61
- cell and tissue lysates, 49t, 59–60
- haptens, 50
- purified native proteins, 49t, 54–55
- recombinant proteins, 49t, 54–55
- synthetic peptides, 49t, 50–54
- ImmunoGenes, 236
Immunogenicity, 44–49

antigen valency affect on, 119
defined, 2, 44
failure of animal to respond, 46–47
polyvalent versus monoclonal antibodies, 47–48, 47t

properties of good immunogens, 45–46, 46d
of pure antigens (purified native proteins), 54
selecting the antigen and, 48, 49t
strengthening, 61–64

synthetic class II–T-cell receptor sites, 47t

Immunoglobulin G (IgG)

immunoassays, 2, 44

isolation of a total IgG fraction, 372–373
functions of, 362, 364
Fc-binding proteins, 363t
cross-linking antibodies to beads, 591–592
class-switching, 233–234
chicken, 376
characteristics of, 13t
structure, 232f
function, 362, 364
Fc-binding proteins, 363t
characteristics of, 13t
structure, 12, 232f, 362
subclasses, 10
structure, 10–11, 12–13, 232f
secondary response and, 33
purification of Fab and F(ab’2) fragments, 376

Immunoglobulin A (IgA)

isotyping, 361–362

antibodies (protocol), 607–612

elicitation, 620
materials, 617–618
method, 618–621
recipes, 622–624

reverse cross-linking, 621
setting up the ChIP, 620
troubleshooting, 623t
washing, 620

cross-linking antibodies to beads
overview, 541, 591–592, 592f
using dimethyl pimelimidate (DMP), 591, 592t, 593–596
using disuccinimidyl subpimelidate (DSS), 591, 592f, 597–600
epitope tags, 539

experimental strategies, 533f
immunosorbents, 539–541, 540t
magnetic beads, 791
optimization, 542–543
overview, 532–534, 533f
phases of technique, 532, 533f
protocol for, 602–606
discussion, 605
materials, 602
methods, 602–603
recipes, 606
troubleshooting, 604–605

radiolabeling of protein antigens
metabolic labeling of antigens with [35S] methionine (protocol), 546–551
discussion, 549–550
materials, 546–547
method, 547–549
recipes, 550–551
suggested labeling amounts, 547t
troubleshooting, 549
overview, 534, 545

pulse-chase labeling of antigens with [35S] methionine (protocol), 552–557
discussion, 553–556
materials, 552–553
method, 553–555
monolayer-cultured cells, 554
recipes, 556–557

suspension-cultured cells, 554–555
radios isotopes used in metabolic labeling, 559t

strength of antibody binding, 25t

tandem immunoaffinity purification using anti-FLAG and anti-HA antibodies (protocol), 607–612
discussion, 611
materials, 607–608
method: anti-FLAG purification, 607–608
method: anti-HA purification, 609–610
recipes, 612
troubleshooting, 610–611t
visualizing immunoprecipitated proteins, 541–542

© 2014 Cold Spring Harbor Laboratory Press
Inclusion bodies, 56
sarkosyl preparation of antigens from bacterial inclusion bodies (protocol), 95–96
Inclusion body lysis buffer (recipe), 96
Incomplete Freund's adjuvant, 114
India ink, 81, 497
Indirect ELISA
advantages and disadvantages, 633f
antibody capture assay, 21f
antibody capture in polyvinyl chloride wells (protocols)
enzyme-linked detection, 238–239
enzyme-linked detection when immunogen is an immunoglobulin fusion protein, 240–241
cell-based ELISA, 661–665, 663f–664f
competitive, 670–673, 671f, 673f
direct versus, 632, 633f
immunometric, 644–650, 644f–645f, 647–649f
Influenza hemagglutinin, 10f
Injection routes, 120–127
anaphylactic shock and, 122
boosts, 124
footpad, 123, 168–169, 169f
genetic (naked DNA) immunization, 125
hock, 123–124, 168–169, 169f
intradermal, 121–122, 159–160, 160f
intramuscular, 121, 157–158, 158f
intraperitoneal, 122–123, 165–167, 167f–168f
intravenous, 121, 161–164, 162f, 164f
into lymphoid organs, 123–124
for mice, rats, and hamsters, 120f
overview, 120
proteins, 130–169
footpad or hock immunization of mice, rats, and hamsters, 168–169, 169f
immunizing mice and rats with nitrocellulose-bound antigen, 154–156, 155f
intradermal injection in rabbits, 159–160, 160f
intramuscular injection in rabbits, 157–158, 158f
intraperitoneal injection with adjuvant in mice and rats, 165, 165f
intraperitoneal injection without adjuvant in mice and rats, 165–167, 166f–167f
intravenous injection in mice, 163–164, 164f
intravenous injection in rabbits, 161–162, 162f
subcutaneous injection in rabbits, 150–151
subcutaneous injection with adjuvant into mice and rats, 152
subcutaneous injection without adjuvant into mice and rats, 153
for rabbits, 121f
repetitive immunization at multiple sites (RIMMS), 124, 125f, 125f
subcutaneous, 120–121, 150–153
Innate immunity
described, 1
link to adaptive immunity, 2–3
Insect. See also Baculovirus
cells, 58, 58f
Insoluble proteins as immunogen form for immunizing animals, 117f, 118–119, 118f
Institutional safety office, 819
Integrin CELLLine 1000 flask, 314, 314f
Integrin screening, 775
Interleukin-6 (IL-6), 34
Intermolecular bridges, 25, 26f
Internalizing antibodies, screening for, 215, 216f
Interspecies hybridomas, 205, 234
Intracellular staining by flow cytometry/FACS, 249–250
Intradermal injection, 121–122
in rabbits (protocol), 159–160, 160f
Intramuscular injection, 121
in rabbits (protocol), 157–158, 158f
Intraperitoneal injection, 122–123
with adjuvant in mice and rats (protocol), 165, 165f
without adjuvant in mice and rats (protocol), 166–167, 166f–167f
Intravenous injection, 122
in mice (protocol), 163–164, 164f
in rabbits (protocol), 161–162, 162f
InvivoGen PlasmoTest Kit, 338–339, 339f
iodine
detecting iodine-labeled reagents, 727–728
iodination of antibodies with immobilized iodogen (protocol), 462–463
iodoacetyl, in conjugation of peptides to thiol-reactive gel protocol, 401–402
ion-exchange chromatography, for cleanup and purification of antibody conjugates, 464–465
ion-exchange methods, 374–375
ionic detergents, 535, 805, 806f
IP. See Immunoprecipitation
Isoelectric focusing
two-dimensional isoelectric focusing/SDS-polyacrylamide gel electrophoresis, 762–764
Isoflurane, 112, 113t, 136–137, 136f, 140
Isotype determination of rodent-derived monoclonal antibodies using sandwich ELISA (protocol), 366–370
Isotype
described, 361
human isotype classes and associated Fe-binding proteins, 363f
isotyping, 361–362, 366–370
Isotype determination of rodent-derived monoclonal antibodies using sandwich ELISA (protocol), 366–370
materials, 366–367
method, 367–369
binding anti-light-chain detection antibodies, 369
blocking the wells, 367
capturing sample and positive control antibodies, 369
coating ELISA plate with capture antibody, 367
color development, 369
plate layouts, 368f
preparing anti-light-chain detection antibodies, 369
sample preparation, 367
recipe, 370
troubleshooting, 370
ITC (isothermal calorimetry), 361
K
k gene, DNA rearrangement and, 14–15, 15f
Ketamine/diazepam for anesthesia, 140
Ketamine/xylazine for anesthesia, 113f
Keyhole limpet hemocyanin (KLH)
choosing as carrier, 54
coupling antigens to, 62
coupling haptons to, 50
cross-linking peptides to KLH with maleimide (protocol), 85–86
KLH buffer (recipe), 86
Knockout mice, for antibodies against highly homologous protein, 53
Kunek mutagenesis, 422
Kymab, 236
Kymouse, 236
Kyte-Doolittle hydrophobicity program, 51
L
Labeling antibody cleanup and purification of antibody conjugates, 464–468
affinity chromatography, 465
desalting or buffer exchange using size-exclusion chromatography (protocol), 467–468
dialysis, 465–466
ion-exchange chromatography, 464–465
overview, 464–466, 464f
reversed-phase chromatography, 465
size-exclusion chromatography, 464, 464f, 467–468
cross-linker selection, 431–433, 432t, 433f
amines/carboxyls, 431–432, 432f, 432f
carbohydrates (aldehydes), 432, 433f
sulfhydryls, 432f, 433f
labeling by biotinylation, 435–441
labeling using biotin polyethylene oxide (PEO) iodoacetamide (protocol), 438–439
labeling using hydrazide-LC-biotin (protocol), 440–441
labeling with NHS-LC-Biotin (protocol), 436–437
overview, 435
labeling with fluorophores, 442–447
labeling using a maleimido dye (protocol), 446–447
labeling using NHS-fluorescein (protocol), 444–445
list of fluorophores, 442f
overview, 442–443, 442f
labeling with metals and elements, 455–460
labeling with colloidal gold (protocol), 459–460
labeling with europium (protocol), 457–458
overview, 455–456
overview, 429–430, 430f
protein–antibody conjugate formation, 448–454
conjugation to horseradish peroxidase (HRP) (protocol), 450–451
labeling with Cy5-phycocerythrin (protocol), 452–454
overview, 448–449
protocols, 435–468
radiolabeling, 461–463
autoradiography protocol, 83–84
iodination with immobilized iodogen (protocol), 462–463
overview, 461
SDS-PAGE gel and, 55
storage of antibody conjugates, 466
target choice, 430–431

© 2014 Cold Spring Harbor Laboratory Press
cell lines used as fusion parents, 204t
cell repositories, 309
fusion of cells
elimination of unfused cells by drug selection, 205, 206f
polyethylene glycol as fusing agent, 205
preparing cells for fusions, 219, 219f
fusion protocols
electro cell fusion, 281–285
fusion by Sendai virus, 279–280
polyethylene glycol fusion, 274–278
growing
cell culture, 304–309
antibiotics for, 304, 306t
long-term storage for, 309
media, 304–307, 305t–306t
sending and receiving myelomas, 309
suppliers of media, 307t
technique for, 307–308
contamination of cell cultures, 309–313
bacteria, fungi, or yeast, 309–310
mycoplasma, 309–313, 311t–312t
counting myeloma cells (protocol), 318–319, 319f
protocols, 318–352
selecting myeloma cells for HGPRT mutants with 8-azaguanine (protocol), 349
N
NABP-NF, detecting alkaline phosphatase-labeled cells (protocol), 718
NanoDrop protein quantification, 793
Nanoparticles, gold, 455, 459–460
Naphthol-AS-BI-phosphate (NABP)
-N-hydroxysuccinimide (NHS), 377, 431–432
staining cells for flow cytometry in, 247–248
described, 633–634
antigen capture in (capture or sandwich labeling antibodies with NHS-LC-Biotin labeling antibodies using NHS-fluorescein cross-linking antibodies to beads and, 591, 592f, 597
staining immunoblot for total protein with Peroxidase protocol (protocol), 450–451
labeling antibodies using a maleimido dye (protocol), 446–447
NTA (nitrilotriacetic acid), 455
N-succinimidyl S-acetylthioacetate (SATA), 433
in antibody conjugation to horseradish peroxidase protocol, 450–451
labeling antibodies using a maleimido dye (protocol), 446–447
NTA (nitrilotriacetic acid), 375
Nuclear acids, as immunogen form for immunizing animals, 117t, 118t
Nystatin, 325
O
Occupational Safety and Health Administration (OSHA), 819
Oligonucleotides, creation of recombinant antibodies using degenerate oligonucleotides (protocol), 407–409
discussion, 408–409
materials, 407–408
method, 408
Oncogenes, 235
OPD (o-phenylenediamine) (protocol), 291–293, 292f
precipitin lane, 232, 292f
Ovalbumin (OVA), coupling antigens to, 62
coupling happens to, 50
Oxaloacetate pyruvate insulin (OPI), 217, 226,
269–270, 286–290
PAGE. See Polyacrylamide gel electrophoresis
Pall Corporation, 382–383
Pam3Cys-Ser-Lys adjuvant, 115–116
Paraffin tissue sections, preparing (protocol), 696–697
Parafomaldehyde fixing attached cells in (protocol), 705–706
fixing suspension cells with (protocol), 707
Parafomaldehyde (4%) (recipe), 692, 695, 699, 706
Paratopos, 354–355
Partial proteolytic peptide maps, 760–761
Particulate proteins, as immunogen form for immunizing animals, 117t, 118t
Pasteurella infections, 114
pBluescript, 412, 414
PBS (recipe), 386, 394, 396, 400, 404
pcDNA 3.1, 816f
pComb3H, 422
PCR. See Polymerase chain reaction
pDEST 8, 818f
pDEST 15, 817f
pDEST 27, 817f
PEG. See Polyethylene glycol
Penicillin, addition to culture media, 304, 306t, 312, 325
PEO (polyethylene oxide) iodoacetamide, for labeling antibodies by biotinylation, 438–439
Pepsin, 438
Peptide(s). See also Synthetic peptides
conjugation of peptides to thiol-reactive gel (protocol), 401–402
designing against highly homologous extracellular proteins, 53
sequence, choosing the appropriate, 52
size, 53
Peptide libraries, overlapping for determination of epitope location, 356–357
Peptide maps, partial proteolytic, 760–761
Peptide-specific antibodies, affinity purification of, 378
Peritoneal macrophages
feeder plate preparation, 266
ridding cell lines of contaminating microorganisms with peritoneal macrophages, 327
Permeabilized whole cells, antibody capture on immunofluorescence, 253–254
intracellular staining by flow cytometry/FACS, 249–250
pet-SUMO, 816f
pFFAC, 412, 413f, 415–416
pFastBacI, 816f
pH of antigen preparation, 54
cross-linking and, 62
Phage
collection of particles, 420
panning for, 420
Recipes (Continued)

- alkaline phosphate buffer, 523, 720
- antigen dialysis buffer, 80
- antigen electrophoresis buffer, 80
- BCIP stock solution for AP, 523
- blocking buffer, 370
- blocking solutions, 513, 517, 529
- borate buffer (pH 8.0, 1×), 593
- borate buffer (pH 9.0, 1×), 593
- Bouin’s fixative, 699
- buffer D for dounce homogenization, 574
- buffer C for dounce homogenization, 574
- buffer A for dounce homogenization, 574
- citrate binding buffer, 98
- chasing medium, 556
- citrate binding buffer, 98
- citrate elution buffer, 99
- DAB substrate solution for HRP, 523
- developing solution (for AP), 239, 241
- DNA loading buffer (6×), 583
- D-10 medium, 277
- ethanolamine (1×), 596
- elution buffer, 623
- ethanolamine (1×), 596
- FACS buffer, 745
- formaldehyde solution (1%), 623
- fusion selection medium, 351
- GST lysis buffer, 88
- guanidine-chloride stripping buffer, 529
- HAT selection medium, 351
- homemade chemiluminescent substrate solution for HRP, 523
- homemade chemiluminescent substrate solution for HRP: solution A, 523
- homemade chemiluminescent substrate solution for HRP: solution B, 524
- hydroxyamine buffer, 477, 451
- inclusion body lysis buffer, 96
- KLH buffer, 86
- label medium, 550, 556, 562
- Laemmli sample buffer (2×), 606, 612
- lysis buffer 1 (1×), 583
- lysozyme buffer (2×), 583
- lysozyme buffer 1 containing protease inhibitors, 583
- lysozyme buffer 1 for ChIP, 623
- lysozyme buffer 2 for ChIP, 623
- lysozyme buffer 3 for ChIP, 623
- MBP binding buffer, 93
- MBP elution buffer, 93
- MBP lysis buffer, 94
- MBP stock solution for AP, 524
- Nonidet P-40 lysis buffer, 567
- OPI supplement, 270, 285, 287, 290
- paraformaldehyde (4%), 692, 695, 699, 706
- PBS, 386, 394, 396, 400, 404
- phosphate-based immunoblot wash buffer (PBST), 508, 513, 518, 529
- phosphate-buffered saline (PBS) (10×), 513
- phosphate-buffered saline (PBS) (pH 7.4), 650, 656, 660, 668, 673
- Poncova S solution, 508
- protease and phosphate inhibitors, 570
- RIPA buffer, 567, 623
- SARKOSYL buffer, pH 7.4, 447, 451
- SDS-PAGE running buffer (1×), 495
- SDS-PAGE sample buffer (1×), 482
- SDS-PAGE sample buffer (2×), 483, 485, 489
- SDS-PAGE sample buffer (3×), 485
- semi-dry transfer buffer (1×), 502
- semi-dry transfer buffer sample stock solution (25×, without methanol), 502
- sodium acetate, 388
- solution A for cross-linking antibodies to beads, 596
- solution B for cross-linking antibodies to beads, 596
- sorbitol buffer, 692
- stacking gel buffer (4×), 496
- starvation medium, 351, 556, 562
- stock buffer (4×), 577
- stock buffer (10×), 577
- stripping buffer with SDS, 530
- TBS (0.1 M), 386, 394, 396, 398, 404
- tissue lysis buffer, 570
- transfer buffer 1, 505
- transfer buffer 2, 506
- Triton X-100 extraction buffer, 577
- Trypan Blue stain (0.4%), 574, 578, 583
- trypsin solution, 253
- Tween 40
- water-saturated isobutyl alcohol, 496
- Recombinant antibodies
- creation using degenerate oligonucleotides (protocol), 407–409
- creation using phage display (protocol), 412–421
- method, 408
- amplification of gene III, 415
- construction of cDNA library, 417–420
- construction of Gene III-kappa c-region insert and ligation into pPDS, 415–416
- construction of pLINK and pABC, 416–417
- construction of pPDS vector, 414
- method, 412–421
- recipe, 411
- modification of antibody function by mutagenesis (protocol), 422–423
Staining. See also Cell staining (Continued)
quick method, 768
standard method, 768
copper chloride, 75, 772
immunoblot for total protein with
Ponceau S, 507–508
silver staining of gels
ammoniacal silver staining, 770
neutral silver staining, 771
sodium acetate, 74
testing for mycoplasma contamination
by Hoechst dye 33258 staining,
332–333, 333f
SDS-PAGE gels, 55
for viability check with Trypan Blue, 320
Standards, molecular weight, 779t
Stock buffer (4
Starvation medium (recipe), 551, 556, 562
Standards, molecular weight, 779t
Stock buffer (10
Substrates, ELISA, 637–639
Submandibular vein, sampling mouse and
rat, 172–173, 173f
Subcutaneous injection, 120–121
with adjuvant into mice and rats
(protocol), 152
in rabbits
(protocol), 150–151
without adjuvant into mice and rats
(protocol), 153
Submandibular vein, sampling mouse and
rat serum from
(protocol), 153
Subunit vaccines, use for immunization
with adjuvant, 114t
T cells
T-cell receptor–MHC-class II protein-binding
sites, coupling antigens with, 62–63
T cells
helper, 35, 36
memory, 33
regulatory (Tregs), 6
T-cell receptor
TCR. See T-cell receptor
TDM (trehalose dimycolate), 115
TEMED (tetramethylenediamine), 491–493
Terminal deoxynucleotidyl transferase (TdT),
410–411
1,4,7,10-tetrazacyclodecane-tetraacetic acid
(DOTA), 455, 457
Tetramethylenediamine (TEMED), 491–493
Texas Red, 722–724, 723t
T-lectins, growing hybridomas in, 314
Thiol-reactive gel, conjugation of peptides to
(protocol), 401–402
Tissue
antibody capture on tissue sections
(immunohistochemistry), 255–257
detergent lysis of animal tissues
(protocol), 508–570
harvesting protocols, 194–199
killing mice, rats, and hamsters using
carbon dioxide asphyxiation,
194–195
lymph node harvesting from mice, rats,
and hamsters, 198–199, 199f
spleen harvesting from mice, rats,
and hamsters, 196–197, 197f
lysates as immunogen source, 49t, 59–60
lyso of, 536–537, 568–570
mounting samples
in DPX, 730
in Gelvatol or Mowiol, 731
preparing, overview of, 679–680
preparing cell smears from tissue samples
or cell cultures
(protocol), 700
preparing frozen tissue sections
(protocol), 693–695
preparing paraffin tissue sections
(protocol), 696–697
preparing sections for staining, 679–680
Tissue culture. See also Cell cultures
cell lysis, 535–536
collecting tissue culture supernatants
(protocol), 346
detergent lysis of tissue culture cells
(protocol), 565–567
storing tissue culture supernatants
and asics
(protocol), 347–348
Tissue culture dishes, growing adherent cells
on
(protocol), 687
Tissue lysate buffer (recipe), 570
TiterMax adjuvant, 114t, 115, 145
TMB (tetramethylbenzidine), 637–638
Tolerance, 6, 46
Toll-like receptors (TLRs)
described, 2
Magic Mouse adjuvant and, 115, 146
simulation of B cells, 33, 34
Toll-like receptor 2 (TLR2), for mycoplasma
detection, 338–339, 339f
Tonsil tissue, stained, 714f
Toxic compounds, 824
Toxin, pertussis, 113
Transfectants, use for immunization, 59–60
Transfected dendritic cell immunizations
(protocol), 104–106
Transfer buffer 1 (recipe), 505
Transfer buffer 2 (recipe), 506

© 2014 Cold Spring Harbor Laboratory Press
Transfer of proteins from gels to membranes, 497–508
overview, 497
semi-dry electrophoretic transfer (protocol), 499–502, 500f
staining the blot for total protein with Ponceau S (protocol), 507–508
wet electrophoretic transfer (protocol), 503–506
Trehalose dimycolate (TDM), 115
1,4,7-triazacyclononane-N,N',N''-triacetic acid (NOTA), 455
Trichloroacetic acid (TCA) precipitation filtration, 796
spotting, 796
Tris-based immunoblot wash buffer (TBST) (recipe), 508, 514, 518, 530
Tris-buffered saline (TBS) (recipe), 514, 518
Tris buffered saline (TBS) (recipe), 650, 656, 660, 664, 668, 673
Tris dialysis buffer (recipe), 454
Tris/glycine SDS-polyacrylamide gel electrophoresis protocol, 755–757
solutions for, 758t
Tris/glycine SDS-polyacrylamide gel electrophoresis, resolving proteins by (protocol), 490–496, 495t
Triton X-100, 535
in differential detergent lysis of cellular fractions protocol, 575–576
in lysing yeast cells with glass beads using lysis buffer 2 without detergents (protocol), 582
Triton X-100 extraction buffer (recipe), 577
Trp fusion vectors, 814f
Trypan Blue, 320, 580
Trypan Blue stain (0.4%) (recipe), 574, 578, 583
Trypsin, affinity of, 24
Trypsin solution (recipe), 257
TSA (tyramide signal amplification), 713
T7 vectors, 813f
TWEEN 40, in differential detergent lysis of cellular fractions protocol, 575–576
using lysis buffer 2 without detergents (protocol), 582–584
protocol, 708
using a coffee grinder (protocol), 585–587
protein expression system, 58t
staining cells, 679
Two-dimensional isoelectric focusing/SDS-polyacrylamide gel electrophoresis, 762–764
Tylosin, addition to culture medium, 340–341
Tyramide signal amplification (TSA), 713
Tyrosine, arsanic acid coupling to, 67
U
Ultracentrifugation, concentration of protein samples by, 793
Ultrasonicators, 820–821
UV detection for protein quantification, 791
protein solutions contaminated with nucleic acids, 791
pure protein solutions, 791
V
Vaccination. See also Antibody responses; Immunization adjuvants, 33–34
tolerance induction, 38
VCS-M13 helper phage, 412, 420
VDJ joining, heavy-chain, 16, 16f
VECTASTAIN Kit, 255–256
Velocimouse, 236
VERSENE, 249
Viability checks (protocol), 320
Virus titer determination, 102–103
V-J joining
κ gene, 15, 15f
lambda, 15, 16f
V8 protease, 760–761
W
Wash buffer (recipe), 606, 612
Waste, disposal of, 821, 822
Water-saturated isobutyl alcohol (recipe), 496
Western blot assay for hybridoma screening, high-throughput (protocol), 244–245
Western blotting. See also Immunoblotting
blocking and incubation with antibodies: immunoblots prepared with immunoprecipitated protein antigens (protocol), 515–518
blocking and incubation with antibodies: immunoblots prepared with whole-cell lysates and purified proteins (protocol), 510–514
Wet electrophoretic transfer (protocol), 503–506
materials, 503
method, 503–505
recipes, 505–506
schematic of, 504f
troubleshooting, 505
Whole cells antibody capture on whole cells (protocols)
cell-surface binding (surface staining by flow cytometry/FACS), 246–248
cell-surface binding (surface staining by immunofluorescence), 251–252
preparing lysates for immunoblotting (protocol), 480–483
X
X-gal, detecting β-galactosidase-labeled cells using (protocol), 721
X-ray crystallography, of epitopes, 355
Xylene
mounting cell or tissue samples in DPX (protocol), 730
Y
Yeast
attaching cells to slides using poly-L-lysine (protocol), 691–692
contamination of cell cultures, 230f, 309–310
overview, 309–310
ridding cell lines of by antibiotics (protocol), 325–326
ridding cell lines of by passage through mice (protocol), 328–329
ridding cell lines of with peritoneal macrophages (protocol), 327
lysing cells, 337
with glass beads (protocol), 579–581
using lysis buffer 2 without detergents (protocol), 582–584
protocol, 708
using a coffee grinder (protocol), 585–587