Index

A
ACBD3, 246–247
N-Acetylglucosaminyltransferase I, 175
ADAM10, 242
ADAM17, 242
AKAPs, 213
α-Dystroglycan, glycosylation, 42
αPS1 integrin, Golgi bypass, 273–274
α-SNAP, 177
ALPS motif, 112
Amyloid precursor protein (APP), trans-Golgi retrograde transport, 190
Ang 2, 159
Anterograde vesicular transport between stable compartments model. See Trafficking models
AP-1, 90, 163, 166, 184, 207, 291
AP-2, 90, 164–165, 184
AP-3, 90, 164
AP-4, 90, 163
Apoptosis, Golgi fragmentation and loss of positioning, 228–229
APP. See Amyloid precursor protein
Architecture, Golgi
 cis-face
 endoplasmic reticulum exit site, 5–6
 vesicular tubular cluster, 6
 comparative structure, 256–257
 Golgi stack, 7–9
 noncompact zone, 9–10
 overview, 2–5
 trans-Golgi network
 higher order organization by tethers, 189–190
 overview, 11
 physical structure, 188–189
 variability by cell type, 13–14
Arf1
 early secretory pathway function, 91, 94–101
 Golgi cis-face entry/exit role, 81–82
 localization, 149
 protein kinase D recruitment to trans-Golgi network, 197–198, 201
 proteomics, 176, 178
 signaling function, 207
ArfGAP1, 100
ArfGAP2/3, 100
ARFGEF2, 247
Arf1, 157, 186
Arf3, 149
Arp1, 221–222
ATPSK2, 43
AUGUSATIFOLIA, 294–295
Axon, specification, 230–231

B
BACE, 183, 190
BARS. See Brefeldin-A ADP-ribosylated substrate
BBsome, 90
Bet1, 79–80, 130
β-Spectrin, 223
BFA. See Brefeldin A
B4GALT7, 43
B3GALTL, 44
BICD-2, 224
Biogenesis, Golgi
 Golgi structure in different organisms, 256–257
 mammalian mechanisms
disassembly
 biological significance, 257–259
 cisternae vesiculation and unstacking, 259–260
 daughter cell partitioning, 260
 Golgi ribbon unlinking, 259
reassembly
 cisternal stacking, 262
 membrane fusion pathways, 261–262
Brefeldin A (BFA)
 Golgi bypass induction, 274
 mechanism of action and effects by cell type, 271–272
 resistance in Golgi bypass, 270
Brefeldin-A ADP-ribosylated substrate (BARS), 99, 258–259, 289, 292–293
Bug1, 76
Bypass, Golgi
 atypical endoplasmic reticulum exit via COPII-independent vesicles, 269
 brefeldin A induction, 274
 cargo bypassing Golgi
 αPS1 integrin, 273–274
 CD45, 273
 connexins, 273
Index

Bypass, Golgi (Continued)
cystic fibrosis transmembrane conductance regulator, 274
detection
 brefeldin A resistance, 270
 EndoH sensitivity, 270
 SNARE independence, 270–271
GRASP protein function, 276–277
overview, 267–269
rationale
 ensuring correct Golgi function, 275–276
 protection of classical cargo proteins, 275
 protein activity regulation, 275
 speed, 275
C
Cage proteins, Golgi coats, 162–163
Calcium flux, protein kinase D activation at trans-Golgi network, 199
Calnexin, 178–179
cAMP. See Cyclic AMP
CASl, 113
CATCHR complexes, 158–161, 167
CD45, Golgi bypass, 273, 275
Cdc42, 229
Cdk1, 260
Ceramide transfer protein (CERT), 200–201, 207, 211
CERT. See Ceramide transfer protein
CFTR. See Cystic fibrosis transmembrane conductance regulator
CHST6, 44
CHST14, 44
cis-face
 COPI-dependent export, 81–82
 endoplasmic reticulum exit site, 5–6
 endoplasmic reticulum-Golgi intermediate compartment membrane fusion, 74, 78–81
golgins
 GM130, 110–112
 GMAP-210, 112
 Golgin-160
prospects for transport studies, 82–83
vesicle tethering machinery
 extended coiled-coil domain tethers, 75–77
overview, 75
TRAPP I, 75, 77–78
vesicular tubular cluster, 6
Cisternae
 formation, 261–262
 stacking, 262
 vesiculation and unstacking, 259–260
Cisternal progenitor model. See Trafficking models
Cisternal progression/maturation model. See Trafficking models
Cisternal progression/maturation with heterotypic tubular transport model. See Trafficking models
CLASP, 190
Clathrin
 cage proteins, 162–163
 inner coat layer, 163–166
 overview, 7, 90
 structure, 162–163
trans-Golgi retrograde transport, 185
COG complex. See Conserved oligomeric Golgi complex
Connexins, Golgi bypass, 273
Conserved oligomeric Golgi (COG) complex
 CATCHR complexes, 158–161
glycosylation disorders, 46–48
 lobes, 46
overview, 28
SNARE interactions, 131–132
COPI
 budding within Golgi stack
 fission proteins, 99–100
 overview, 89–91
 prospects for study, 100–101
 uncoating, 100
 vesicle formation
 Arfl cooperation, 99
 budding and scission, 98–99
 cargo inclusion in vesicles, 97–98
 cargo sorting, 96–97
 coat recruitment, 94–96
 lipids, 93–94
 cage proteins, 162–163
 cis-face export dependence, 81–82
 early secretory pathway role, 91
 endocytic pathway role, 92
 exit routes from Golgi, 195–196
 Golgi stack coats, 10
 inner coat layer, 163–166
 mitosis and Golgi positioning function, 91
 proteomics of transport vesicles, 175–178
 SNARE recruitment, 129
 structure, 92–93
 tether protein interactions, 167
 vesicular tubular clusters, 6
COPII
 cage proteins, 162–163
 endoplasmic reticulum exit site, 5–6
 inner coat layer, 163–166
 SNARE recruitment, 129
 TRAPP I association, 77
COSMC, 45
Coy1, 76
CtBP, 258–259
CTBP1, 293–294
CTBP2, 293–294

© 2011 by Cold Spring Harbor Laboratory Press
Cyclic AMP (cAMP), Golgi signaling, 213–214
Cystic fibrosis transmembrane conductance regulator (CFTR), Golgi bypass, 274–276

D
DAG. See Diacylglycerol
Dendrite, arborization, 230–231
Dermatan sulfate, disorders, 44

Developmental biology
Golgi fragmentation, reconstitution, and intracellular signaling, 244–247
polarized Golgi distribution and transport in neuronal development, 247–249
receptor activation modulation
protein cleavage in Golgi, 238–241
protein glycosylation in Golgi, 241–244
dGRASP, 276–277
Diacylglycerol (DAG)
Golgi signaling, 210
protein kinase D recruitment to trans-Golgi network, 197–198

Dpm1, 209
Dsl1 complex, 100, 131
DTDST, 43
Dyn2, 212
Dynein, Golgi positioning, 220–221, 228

E
EB1, 222
EDEM1, 269, 276
EGFR. See Epidermal growth factor receptor
EHD3, 184
Ehlers–Danlos syndrome, 43
Elks-1, 116
Endoglycosidase H, 26, 270
Endoplasmic reticulum (ER)
 atypical endoplasmic reticulum exit via COPII-independent vesicles, 269
 glycosylation localization, 36–37
 Golgi stack interactions, 9
Endoplasmic reticulum exit site (ERES), 5–6
Endoplasmic reticulum-associated degradation (ERAD), 269
Endoplasmic reticulum-Golgi intermediate compartment (ERGIC)
cis-Golgi compartment membrane fusion, 74, 78–81
exit routes from Golgi, 195–196
Epidermal growth factor receptor (EGFR), activation in development, 238–239, 241
Epidermal growth factor repeat, glycosylation, 27, 44
ER. see Endoplasmic reticulum
ERAD. See Endoplasmic reticulum-associated degradation

ERC1, 115
ERC2, 115
ERES. See Endoplasmic reticulum exit site
ERGIC. See Endoplasmic reticulum-Golgi intermediate compartment
ERGIC-53, 100
ER01, 180
ERp44, 179–180
ESCRT, 90, 287
Evolution, Golgi
 comparative structure, 256–257
 diversity among eukaryotes, 287–288
 eukaryotic lineages, 284–286
 glycosylation
 cell surface glycosylation, 302–304
 Golgi mediation of red queen effects, 307
 overview, 301–302
 pathogens
 attachment to glycans by pathogens and symbionts, 304–305
 evasion with glycan molecular decoys, 306–307
 host glycan change response for survival, 305–306
 immune recognition, 306
 intrinsic functions of host glycans, 305
 mimicry, 306
 prospects for study, 309–310, 312
 variation of glycans
 N-glycans, 307–308
 O-glycans, 308
 glycosphospholipid anchors, 309
 glycosaminoglycans, 309
 glycosphingolipids, 308
 outer extensions of glycoprotein and glycolipid glycans, 308–309
 sialic acids, 309, 311
 Golgi proteins, 289–290
 homology searching, 290–291
 membrane trafficking system, 286–287
 pre-last common eukaryotic ancestor, 295–296
Exomer, 90
EXT1, 43
EXT2, 43

F
Familial tumor calcinosis (FTC), 44–45
FAPP2, 200, 207–208
FCMD. See Fukayama-type congenital muscular dystrophy
FECA. See First common eukaryotic ancestor
Fenestrae, 8
FGF. See Fibroblast growth factor
FGF-23. See Fibroblast growth factor-23
Index

Fibroblast growth factor (FGF), Golgi signaling in development, 243–244
Fibroblast growth factor-23 (FGF-23), mutations, 45
First common eukaryotic ancestor (FECA), 296
Fringe, 243
Frq1, 210
FTC. See Familial tumor calcinosis
Fukayama-type congenital muscular dystrophy (FCMD), 42
Fukutin, 42

G
GAG. See Glycosaminoglycan
GALNT3, 44–45
GARP complex, 159
GARP/VFT complex, 130–131
GAT domain, 166
GCC88, 186, 188
GCC185, 157–158, 186, 188, 190
GCP16, 112
GCP60, 112
GGA proteins, 163, 166, 184
Gigantin, 113
Glycophosphatidylinositol (GPI) anchor disorders, 45–46
overview, 21, 27
variability and evolution, 309
Glycosaminoglycan (GAG) disorders
chain elongation disorders, 43–44
chain initiation disorders, 43
overview, 42–43
substrate limitation, 43
overview, 26
variability and evolution, 309
Glycosphingolipids, variability and evolution, 308
Glycosylation. See also Glycosyltransferases disorders conserved oligomeric Golgi complex disorders, 46–48
glycosphatidylinositol anchor disorders, 45–46
glycosphingolipid disorders, 45
N-glycosylation, 37, 41
O-glycosylation, 42–45
golgin mutations, 49
lipid homeostasis and trafficking, 50
overview, 35–37
prospects for study, 50–51
SEC protein mutations, 49–50
table of disorders, 38–41
transporter mutations, 41–42
vacuolar ATPase mutations, 48–49
endoplasmic reticulum, 36–37
evolution
cell surface glycosylation, 302–304
Golgi mediation of red queen effects, 307
overview, 301–302
pathogens attachment to glycans by pathogens and symbionts, 304–305
evasion with glycan molecular decoys, 306–307
host glycan change response for survival, 305–306
immune recognition, 306
intrinsic functions of host glycans, 305
mimicry, 306
prospects for study, 309–310, 312
variation of glycans
N-glycans, 307–308
O-glycans, 308
glycophospholipid anchors, 309
glycosaminoglycans, 309
glycosphingolipids, 308
outer extensions of glycoprotein and glycolipid glycans, 308–309
sialic acids, 309, 311
glycans as tags for research, 28–30
glycophosphatidylinositol anchor, 21, 27
N-glycosylation, 26
O-glycosylation, 26–27
lipids, 27
overview, 21–22, 36
receptor activation in development, 241–244
regulation, 27–28
sugars added and removed by Golgi, 25
Glycosyltransferases (GTs)
general characteristics, 22–24
glycan types, 21–22
Golgi retention mechanisms, 146–147
Golgi targeting, 24–25
reactions, 24
GM130, 10, 76, 100, 110–112, 229–230, 259, 261
GMAP210, 49, 112, 157–158, 224, 226, 230
GOLGA6A-J, 111
GOLGA8A-J, 111
GOLGA6AL1-10, 111
Golgi biogenesis. See Biogenesis, Golgi
Golgi bypass. See Bypass, Golgi
Golgi evolution. See Evolution, Golgi
Golgi positioning. See Positioning, Golgi
Golgi protein retention. See Protein retention, Golgi
Golgi stack architecture, 7–9
COPI coats and budding. See COPI
interface between Golgi stack, vesicular tubular cluster, and trans-Golgi network, 6–7
rim golgins, 113

© 2011 by Cold Spring Harbor Laboratory Press
Golgin-67
Golgin-84, 113
Golgin-97, 113, 186
Golgin-160
Golgin-245, 186
Golgins. See also specific proteins
cis-Golgi
GM130, 110–112
GMAP-210, 112
Golgin-160
Golgi stack rim, 113
modeling of function, 116–118
overview, 109–110
regulation, 116
structure, 156–158
trans-Golgi
GRIP domain golgins, 113–114, 186
TME, 114
GOLPH3, 146–147, 179, 208
GOPC, 112–113
Gos28, 276
GPI anchor. See Glycophosphatidylinositol anchor
GPP34, 179
GRAB domain, 157
GRASP55, 10, 155, 258–260, 262, 276–277
GRASP65, 10, 65, 110, 155, 229–231, 258, 260, 262,
276–277, 290
Grh1, 76
GRIP domain golgins, 113–114, 157, 186
GS15, 130, 185
GTs. See Glycosyltransferases

H
Heparan sulfate, disorders, 43
Hereditary multiple exostosis (HME), 43
HME. See Hereditary multiple exostosis
Hook3, 226

I
Ilimaquinone (IQ), 196–197
IQ. See Ilimaquinone

K
KDEL proteins and receptors, 96, 98, 178, 213
KIFC-3, 221

L
LARGE, 42
Last common eukaryotic ancestor (LECA). See also
Evolution, Golgi
homology searching, 290–291
membrane trafficking system, 286–287
LC3, 276
LECA. See Last common eukaryotic ancestor
Limb–girdle muscular dystrophy, 42

M
Mabry syndrome, 45
Macular corneal dystrophy, 44
Mannosidase II, 177
MAPK. See Mitogen-activated protein kinase
MEB disease. See Muscle–eye–brain disease
Microtubule
Golgi positioning, 220–224, 226
trans-Golgi network association, 190
Microtubule organizing center (MTOC), 4
Mitogen-activated protein kinase (MAPK). See also
specific kinases
Golgi disassembly role, 259
Golgi signaling, 211–213
Mnn9, 147
MTOC. See Microtubule organizing center
Munc18, 289
Muscle–eye–brain (MEB) disease, 42
MYO18A208

N
Niemann–Pick disease type C, 50
Nir2, 259–259
Notch
activation in development, 240–244
glycosylation, 27, 44
NSF, 124, 148, 188, 261–262, 285
Numb, 244–246

O
Och1, 147
OPH. See Organelle paralogy hypothesis
Organelle paralogy hypothesis (OPH), 295
OS-9, 269
OSBP, 200–201, 208

P
p24 proteins, 96, 101
p38, 199, 210
p38, 258
p47, 262
p97, 259, 261–262
p115, 75–77, 116, 132, 156–158, 229, 259,
261, 290–292
p150, 221–223, 227
Paroxysmal nocturnal hemoglobinuria
(PNH), 46
Peters plus syndrome, 44
Index

Phosphatidylinositol-4-phosphate (PI(4)P) effectors, 207–208
Golgi signaling, 206–210
kinases, 206
Phospholipase D (PLD), 198
PI(4)P. See Phosphatidylinositol-4-phosphate
PIGA, 45
PIGM, 45
PIGV, 45
Pik1, 209–210, 260
PKA. See Protein kinase A
PKC. See Protein kinase C
PKD. See Protein kinase D
PLD. See Phospholipase D
PNH. See Paroxysmal nocturnal hemoglobinuria
Positioning, Golgi mechanism
cytoskeleton-mediated stabilization, 227
direct binding to microtubules and centrosomes, 224, 226
knockdown studies, 225–226
membrane capture by motors and loading onto microtubules, 220–222
multiple motor regulation and bidirectional movement, 227
overview, 219–220
physiological importance
axon specification and dendrite arborization, 230–231
cell polarization and migration, 230
furrow formation during cellularization, 230
regulation
fragmentation and loss of positioning apoptosis, 228–229
mitosis, 227–228
membrane remodeling and reorientation
cell differentiation, 229
cell polarization and migration, 229–230
PP2A, 262
Presomatic mesoderm (PSM), Golgi in development, 243–244
Protein kinase A (PKA), Golgi signaling, 213–214
Protein kinase C (PKC), Golgi signaling, 210–211
Protein kinase D (PKD)
adhesion to trans-Golgi network, 198–199
Golgi signaling, 210–211
identification as membrane fission inducer, 196–197
modified lipid production at trans-Golgi network, 199–201
recruitment to trans-Golgi network, 197–198
Protein retention, Golgi
amino acid sequence-based retention, 145–146
amino-terminal arginine-based motifs, 147
carboxy-terminal lysine-based motifs, 147–148
glycosyltransferases, 146–147
Golgi membrane lipid composition-based retention, 145
overview, 141–143
peripheral membrane protein localization, 149–150
prospects for study, 150
protein aggregation and kin recognition, 144
protein conformation-based retention, 148–149
transmembrane domain-mediated retention, 144–145
Proteomics
COPI transport vesicles, 175–178
Golgi protein discovery and characterization, 178–180
limitations, 174–175
principles, 173–174
PSM. See Presomatic mesoderm
Q
Q-SNARE proteins. See SNAREs
R
Rab1, 76–77, 248, 290
Rab6, 49, 116, 160, 186
Rab7, 184
Rab9, 185, 188
Rab11, 184
Raf, 212
Rapid partitioning in mixed Golgi model. See Trafficking models
Ras, Golgi signaling, 211–213
Retention. See Protein retention, Golgi
Retromer, 90, 184
RHOBTP3, 189
RIG1, 212
RINT-1, 222
R-SNARE proteins. See SNAREs
Rud3, 76
RZZ complex, 222, 228
S
SAC1, 209–210
Sar1, 248
SCYL1BP1, 49, 115
Sec1, 289
Sec2, 207

© 2011 by Cold Spring Harbor Laboratory Press
SNAREs
assembly and disassembly, 123–124
evolution, 286–287, 289–290
Golgi SNAREs, 126–128
independence in Golgi bypass, 270–271
localization, 128–130
modeling of function, 133–135
Q-SNARE proteins, 78–79, 129, 132
R-SNARE proteins, 78–79, 124
SM proteins, 132–133
structure, 124–126
tethering protein interactions, 130–132
trans-Golgi retrograde transport role, 185

SNX1, 185
SORL1, 190
SPCA, 249
Spondyloepimetaphyseal dysplasia (SEMD), 43
STX6, 185
STX10, 185, 188
STX16, 185

T
TANGO1, 292–293
t cell, Golgi positioning, 230–231
Tctex-1, 221
TE. See Tropoelastin
TGN. See Trans-Golgi network
Thrombospondin repeats, glycosylation, 27, 44
TIP47, 184–185, 188
Tlg1, 159
TMF, 114, 116
tn syndrome, 45
Trafficicking models
anterograde vesicular transport between stable compartments
overview, 59–60
strengths, 59–60
weaknesses, 60–61
cisternal progenitor model
overview, 66–67
strengths, 67
weaknesses, 67
cisternal progression/maturation model
overview, 61–62
proteomics, 175–176, 178
strengths, 61
weaknesses, 62
cisternal progression/maturation with heterotypic tubular transport
overview, 63
strengths, 63–64
weaknesses, 64
ideal criteria, 57–59
microscopy data fitting, 68–69
rapid partitioning in mixed Golgi
overview, 64–65
strengths, 64–65
weaknesses, 65–66
trans-Golgi network (TGN)
arquitecture, 11
exits, 11–12
functional overview, 4
golgins
GRIP domain golgins, 113–114, 186
TMF, 114
interface between Golgi stack, vesicular tubular cluster, and trans-Golgi network, 6–7
microtubules, 190
protein kinase D role in export.
See Protein kinase D
retrograde transport
cargoes, 181–182
coats, 184–185
Rab9 and SNARE function, 185
RHOBTB3–Rab9 interactions, 188
sorting, 12–13
structure
higher order organization by tethers, 189–190
physical structure, 188–189
tethering proteins, 186–188
TRAPP I, 75, 77–78, 80–81, 130
TRAPP II, 130
Tropoelastin (TE), 48

U
Ufe1, 131
Uso1, 76–77, 132, 156–157

V
Vaculolar ATPase, mutations, 48–49
VAMP3, 185
VAMP4, 185
VCIP135, 262
Index

Vesicular tubular cluster (VTC)
architecture, 4–6
interface between Golgi stack, vesicular tubular
cluster, and trans-Golgi network, 6–7
VHS domain, 166
Vps6, 188
Vps45, 132–133
Vps51, 159, 186
Vps52, 159–160, 186
Vps53, 159, 186
Vps54, 159
Vps74, 146–147, 179, 208
Veg4, 148
VTC. See Vesicular tubular cluster

W
Walker–Warburg syndrome, 42
Wnt, 243–244

Y
Ykt6, 128, 185
Ypt1, 77, 79–88
YSK1, 230

Z
ZW10, 222