Index

A
ABCB19, mitoferrin I stabilization, 124
Acute chest syndrome. See Sickle cell anemia
Acute splenic sequestration crisis. See Sickle cell anemia
ADA. See Adenosine deaminase
Adair, Gilbert, 2
Adenosine deaminase (ADA), gene therapy for deficiency, 356–357
AGM. See Aorta-gonad-mesonephros
AHSP. See α-Hemoglobin stabilizing protein
ALAS. See Aminolevulinate synthase
α-Globin
comparative biology. See Hemoglobin
mutations. See α-Thalassemia
normal variants of gene cluster, 187
structure and expression of gene cluster, 184–187
unstable variants, 392–393
α-Hemoglobin stabilizing protein (AHSP),
β-thalassemia pathophysiology, 200
α-Thalassemia
epidemiology, 246–247, 285–286
gene defects of α-globin gene cluster
α-ZF mutation, 192
deletions in duplicated structural genes, 189–191
duplications, 188
large deletions beyond gene cluster, 191–192
normal variants versus pathological variants, 187–188
overview, 183–184
translocations, 188
upstream regulatory element
competition for elements, 193–195
deletions, 193
geographic distribution, 139
hemoglobin E interactions, 230–231
hemoglobin H disease. See also Hemoglobin Bart’s hydrops fetalis syndrome
diagnosis, 249–251
laboratory screening, 249–251
management, 251
severity, 247–249
malaria natural selection effect on distribution, 153–154
management
iron chelation therapy
costs, 280–281
deferasirox, 279
deferoxamine, 277–279
initiation, 275–276
monitoring, 275, 277, 280
principles, 271–272
mental retardation syndromes
ATR-16 syndrome
chromosomal abnormalities, 257–258
genetic defects, 256
ATR-X syndrome
ATRX identification and characterization, 261–264
clinical features, 259–260
genotype–phenotype correlation, 262–263
hematology, 260–261
severity, 263
X-linked heredity, 261
overview, 138, 255–256
mild forms, 247
molecular diagnosis, 291
myelodysplastic syndrome association. See α-Thalassemia-myelodysplasia
overview, 137, 245–246
phenotypes, 184
prevention programs
gene counseling, 293
population control, 286–287
preimplantation diagnosis, 294–295
prenatal diagnosis, 293–295
prospects, 296
sickle cell anemia severity impact, 307
α-Thalassemia-myelodysplasia (ATMDS)
ATRX mutations, 266
overview, 138, 264–265
Aminolevulinate synthase (ALAS)
ALAS-2 mutation
X-linked protoporphyria, 127
X-linked sideroblastic anemia, 124, 127–128
heme synthesis, 116–117
isozymes, 117
regulation, 121–122
Anemia. See Iron deficiency anemia; Sickle cell anemia;
X-linked sideroblastic anemia
Aorta-gonad-mesonephros (AGM), erythropoiesis, 15–17
Aspirin, β-thalassemia intermedia management, 223
Index

Atherosclerosis, hemoglobin as disease modifier, 410–411
ATMDS. See α-Thalassemia–myelodysplasia
ATR-16 syndrome
chromosomal abnormalities, 257–258
genetic defects, 256
overview, 191–192
ATRX
ATRX syndrome genotype–phenotype correlation, 262–263
characteristics of gene and protein, 261–262
protein function, 263–264
α-thalassemia–myelodysplasia mutations, 266
ATR-X syndrome
ATRX identification and characterization, 261–264
clinical features, 259–260
genotype–phenotype correlation, 262–263
hematology, 260–261
severity, 263
X-linked heredity, 261
5-Azacytidine, hemoglobin F induction, 90, 97
transduction optimization, 364–365
vectors
gammaretroviral vectors, 358–359
lentiviral vectors, 359–360
limitations, 356–357
locus control region, 358–359
retroviral vector modification for safety, 357–358
genetic modifiers, 201–204
geographic distribution, 139
hematopoietic stem cell transplantation
adults, 345
alternative donors, 345–346
mixed chimerism, 347
outcomes
haploidentical donors, 346–347
matched donors, 345
risk class approach, 344–345
hemoglobin F expression and severity of disease, 88
malaria natural selection effect on distribution, 153–154
management
iron chelation therapy
costs, 280–281
deferasirox, 279
deferoxiprone, 279–280
deferoxamine, 277–279
initiation, 275–276
monitoring, 275, 277, 280
principles, 271–272
mild phenotype prediction, 291–293
molecular diagnosis, 291
mutations
deletions
β-globin gene, 170, 172
classification, 170–171
upstream deletions, 172
dominantly inherited disease
alleles, 168–169
codon deletion or insertion, 174–175
elongated or truncated β-globin variants, 175
missense mutations, 173–174
nonsense mutation, 175
overview, 172–173
recessive versus dominant inheritance, 175–176
nondeletional forms
initiation codon of β-globin mutations, 169
point mutations, 162–166
posttranscriptional modification
mutants, 169
RNA processing mutants, 166–169
termination codon of β-globin mutations, 169–170
transcriptional mutants, 160–161, 166
normal HbA2 β-thalassemia, 176

© 2013 by Cold Spring Harbor Laboratory Press
overview, 159–160
silent β-thalassemia, 176–177
trans-acting mutations, 177
uniparental isodidomy, 178
overview, 136–137
pathophysiology, 201
pluripotent stem cell modeling of disease, 376
prevention programs
carrier detection, 288–290
education, 287–288
 genetic counseling, 293
 outcomes, 295–296
 population control, 286–287
 preimplantation diagnosis, 294–295
 prenatal diagnosis, 293–295
 prospects, 296
β-Thalassemia intermedia
clinical morbidity and pathophysiology
diabetes, 221
gallstone, 221
hypercoagulability and thromboembolism, 216–219
iron overload, 215–216
leg ulcers, 221
pseudotumors, 220–221
pulmonary hypertension, 219–220
genetic defects, 214–215
management
anticoagulation therapy, 223
hemoglobin F induction, 223
iron chelation, 222
red blood cell transfusion, 222
splenectomy, 222–223
overview, 213–214
BMPs, osteonecrosis variants in sickle cell disease, 320
Bohr, Christian, 2–3
Bone marrow transplantation. See Hematopoietic stem cell transplantation
Bone morphogenetic protein-6 (BMP-6), hepcidin synthesis regulation, 106–107

C
CD163, hemoglobin scavenger system, 416–417
Chronic granulomatous disease (CGD), gene therapy, 356–357, 363
Cooley, Thomas, 4
Coprophyrinogen, import by mitochondria, 119
Coprophyrinogen oxidase (CPOX), heme synthesis, 119–120
Corfu mutation, β-thalassemia, 176
CREB-binding protein. See p300
CTCF: globin gene expression regulation, 60
Cytooglobin, comparative biology in vertebrates, 50–51

D
Decitabine, sickle cell anemia management, 336
Deferasirox
dosing, 276
pharmacology, 279
safety and tolerability, 279
Deferiprone
advantages, 280
pharmacology, 279–280
safety and tolerability, 280
Deferoxamine
advantages, 278
dosing, 276
pharmacology, 277–278
safety and tolerability, 278–279

E
Embryonic stem cell (ESC)
banking of cells, 378–379
costs of therapy, 377–378
differentiation protocols, 376–377
disease modeling applications
hemoglobinopathies, 374–375
overview, 374
gene therapy, 377
pluripotency factors, 373–374
EPO. See Erythropoietin
EPP. See Erythropoietic protoporphyria
Erythroblast-macrophage protein. See Macrophage-erythroblast attacher
Erythroid Kruppel-like factor. See KLF1
Erythropoiesis
erthroblastic islands and terminal differentiation, 21–22
hematopoietic system ontogeny, 13–17
hemoglobin E β-thalassemia and excess, 236
lineage differentiation
adult hematopoiesis, 18
ontogeny, 17–18
niche, 19–20
regulation, 19–21
transcriptional regulation, 22–24
Erythropoietic protoporphyria (EPP)
ferrochelatase mutation, 125
overview, 125–127
pathophysiology, 122
Erythropoietin (EPO)
anemia and underproduction, 38
central nervous system function, 33–34
erthrocytosis and overproduction, 38–39
erythropoiesis role, 20, 31
expression regulation
HNF-4, 37
hypoxia-inducible factor, 35–37
overview, 34–35
Index

Erythropoietin (EPO) (Continued)
- p300, 37–38
- history of study, 29–30
- ischemia/reperfusion injury studies, 34
- production, 30–32
- receptor interactions, 32–33
- structure, 32
- therapy, 39–41

F
- Fas, erythroid homeostasis role, 20, 22
- FECH. See Ferrochelatase
- Feline leukemia virus C receptor (FLVCR), heme transport, 122
- Ferritin, hemoglobin H disease levels, 250
- Ferrochelatase (FECH)
 - erythropoietic protoporphyria mutation, 125
 - heme synthesis, 120–121
 - multienzyme complexes, 122–123
- Fetal hemoglobin. See Hemoglobin F
- FL VCR. See Feline leukemia virus C receptor
- FOG-1
 - GATA mediation in hemoglobin gene expression regulation, 69–72
 - NuRD interactions, 71, 75
- FOP1, hemoglobin F induction studies, 95

G
- Gallstone
 - β-thalassemia intermedia, 221
 - hemoglobin E β-thalassemia, 236
- Garrod, Archibald, 4
- GATA1
 - β-thalassemia mutation, 177
 - globin gene expression regulation, 60
 - hemoglobin F induction studies, 91
 - hemoglobin gene expression regulation, 68–72
- GATA2
 - erythropoiesis regulation, 22
 - GATA1 interactions, 70
- Gene therapy, β-thalassemia
 - clinical trials, 361–363
 - erythroid cell models, 361
 - immunodeficiency disease management, 355–357
 - mouse models, 360–361
 - overview, 240, 355
 - selective amplification in vivo, 361
 - transduction optimization, 364–365
 - vectors
 - gammaretroviral vectors, 358–359
 - lentiviral vectors, 359–360
 - limitations, 356–357
 - locus control region, 358–359
 - retroviral vector modification for safety, 357–358

Genome-wide association study (GWAS)
- hemoglobin E β-thalassemia, 239
- sickle cell anemia
 - overview, 316–317
 - population coverage, stratification, and admixture, 317–318
 - published studies, 318–320
 - replication, 318
 - sequencing of variants, 318
 - statistical power, 317
 - stroke, 320
- Graft-versus-host disease (GVHD), hematopoietic stem cell transplantation, 344, 349–350
- GVHD. See Graft-versus-host disease
- GWAS. See Genome-wide association study

H
- Haptoglobin (Hp)
 - hemoglobin scavenger system, 415
 - therapeutic applications, 419
- HbAE Bart’s disease, 232
- HbAEF Bart’s disease, 232
- HBOC. See Hemoglobin-based oxygen carrier
- HBSIL, hemoglobin F induction studies, 94
- HDAC. See Histone deacetylase
- Heart rate variability (HRV), hemoglobin E β-thalassemia, 235
- Hematopoiesis. See Erythropoiesis
- Hematopoietic stem cell (HSC), ontogeny and development, 14–16
- Hematopoietic stem cell transplantation (HSCT)
 - β-thalassemia
 - adults, 345
 - alternative donors, 345–346
 - mixed chimerism, 347
 - outcomes
 - haploidentical donors, 346–347
 - matched donors, 345
 - risk class approach, 344–345
 - sickle cell anemia
 - hemoglobin F increase after failed transplantation, 350–351
 - mixed chimerism, 349–350
 - outcomes, 348–349
 - overview, 347–348
 - regimen modification, 350
- Heme disorders
 - erythropoietic protoporphyria, 125–127
 - overview, 124–125
 - X-linked protoporphyria, 127
 - X-linked sideroblastic anemia, 127–128
 - low-density lipoprotein oxidation, 410
 - structure, 425
 - synthesis
aminolevulinate synthase, 116–117
coporphyrinogen import by mitochondria, 119
coporphyrinogen oxidase, 119–120
ferrochelatase, 120–121
hydroxymethylbilane synthase, 118
multienzyme complexes, 122–124
overview, 116
porphobilinogen synthase, 117–118
protoporphyrinogen oxidase, 120
regulation, 121–122
uroporphyrinogen decarboxylase, 118–119
uroporphyrinogen synthase, 118
Heme oxygenase-1 (HO-1)
hemoglobin scavenger system, 417
sickle cell anemia and malaria tolerance
mechanism, 409
Hemoglobin
comparative biology
gene clusters in jawed vertebrates
coordinated regulation between \(\alpha \)-globin and \(\beta \)-globin gene clusters, 53
developmental regulation of expression, 51–53
evolution of multiple globin gene clusters, 53–54
lineage-specific gains and loss of \(\beta \)-like globin genes, 55–58
stability of \(\alpha \)-globin gene cluster, 54–55
globin gene expression regulation, 58–61
globin heme protein family, 49–51
cooperativity, 388–390
developmental regulation of globin gene synthesis, 390–391
disorders. See also specific disorders
epistatic interactions, 154–155
frequency, 147–148
general classification, 134–135
natural selection for malaria protection
hemoglobin C, 151–152
hemoglobin E, 152–153
hemoglobin S, 148–151
thalassemia distribution impact, 153–154
fetal-to-adult hemoglobin switch. See Hemoglobin F
gene expression regulation
BCL11A, 68, 75–77
GATA, 68–75
KLF1, 76
overview, 67–68
history of study
diseases, 4–6
properties, 1–4
synthesis, 6–7
mean cell hemoglobin concentration and sickle cell anemia severity impact, 307
nitric oxide binding and disease modification, 411–413
oxidation and disease modification, 413–415
scavenger system
CD163, 416–417
haptoglobin, 415
heme oxygenase, 417
hemopexin, 415–416
therapeutic applications, 417–419
structure, 387–388
synthesis, 386–387
variants
definition, 383
globin chain elongation mutants, 396–397
high oxygen affinity variants, 393–395
identification, 390
laboratory testing, 391–392
low oxygen affinity variants, 395
methemoglobin variants, 395–396
multiple function variants, 397–399
table of types, 384–386
unstable variants, 392–393
Hemoglobin A, comparative biology in vertebrates, 50–51
Hemoglobin Bart’s hydrops fetalis syndrome (BHFS)
overview, 137, 245, 251–252
prenatal management, 252–253
prevention, 252–253
Hemoglobin-based oxygen carrier (HBOC)
oxidation, 415
pulmonary hemodynamic studies, 411, 413
sickle cell anemia treatment, 406–407
Hemoglobin Bristol-Alesha, 399
Hemoglobin C, natural selection for malaria protection, 151–152
Hemoglobin Constant Spring (HbCS), 137, 249, 397
Hemoglobin Cranston, 397
Hemoglobin E
\(\alpha \)-thalassemia interactions, 230–231
natural selection for malaria protection, 152–153
properties, 229–230
Hemoglobin E \(\beta \)-thalassemia
clinical presentation, 200–201, 233–234
complications
cardiac disease, 235
endocrine dysfunction, 237
erthrocytosis excess, 236
gallstone, 236
hypertension, convulsions, and cerebral hemorrhage, 236
hypoxemia, 235–236
infection susceptibility, 235
iron overload, 236–237
jaundice, 236
splenomegaly, 234–235
thromboembolism, 236
genotype–phenotype correlation
\(\alpha \)-thalassemia coinheritance, 238

© 2013 by Cold Spring Harbor Laboratory Press
Hemoglobin E \(\beta\)-thalassemia (Continued)
anemia adaptation, 239
\(\beta\)-E-globin mRNA splice variants, 238
\(\beta\)-thalassemia mutations, 237–238
genome-wide association study, 239
hemoglobin F levels, 238
pyrimidine 5\' nucleotidase deficiency, 238
severity, 237
laboratory findings, 231, 234
pathophysiology, 232–233
prevention, 240
treatment, 239–240

Hemoglobin F expression
regulation studies, 91–97
severity of blood diseases, 88–89
HbA1c, \(\beta\)-thalassemia levels, 176
hematopoietic stem cell transplantation failure and increase, 350–351
hemoglobin E \(\beta\)-thalassemia levels, 238
hereditary persistence of fetal hemoglobin, 17–18, 89, 136–137, 203
induction therapy
sickle cell anemia management, 336
\(\beta\)-thalassemia intermedia, 223
therapeutic application, 91–97
sickle cell anemia severity impact, 88, 307
\(\beta\)-thalassemia impact, 202–203
therapeutic induction, 89–90

Hemoglobin H \(\alpha\)-thalassemia. See \(\alpha\)-Thalassemia

Hemoglobin S
natural selection for malaria protection, 148–151
sickle cell anemia polymerization, 343–344, 399

Hemoglobin Zurich, 397–398

Hemopexin (Hpx)
hemoglobin scavenger system, 415–416
therapeutic applications, 419

Hepcidin
iron homeostasis, 106
synthesis regulation
erthropoiesis, 108
inflammation, 109
overview, 106–108

Hereditary hemochromatosis, 109–110
Hereditary persistence of fetal hemoglobin (HPFH), 17–18, 89, 136–137, 203
Herrick, James, 9

HIE. See Hypoxia-inducible factor

High-performance liquid chromatography (HPLC), hemoglobin variants, 391
Histone deacetylase (HDAC), hemoglobin F induction with inhibitors, 90
HMBS. See Hydroxymethylbilane synthase
HNF-4, erythropoietin gene regulation, 37
HO-1. See Heme oxygenase-1

Hookworm, iron deficiency anemia association, 428–429
HPFH. See Hereditary persistence of fetal hemoglobin
HPLC. See High-performance liquid chromatography
Hpx. See Hemopexin
HRV. See Heart rate variability
HSC. See Hematopoietic stem cell
HSCT. See Hematopoietic stem cell transplantation
Hydrogen peroxide, hemoglobin oxidation, 413
Hydroxycarbamide, hemoglobin F induction for \(\beta\)-thalassemia intermedia, 223
Hydroxymethylbilane synthase (HMBS)
heme synthesis, 118
multienzyme complexes, 123

Hydroxyurea
hemoglobin E \(\beta\)-thalassemia management, 240
hemoglobin F induction, 90
sickle cell anemia management, 335–336

Hypoxemia, hemoglobin E \(\beta\)-thalassemia, 235–236

Hypoxia-inducible factor (HIF)
erthropoietin gene regulation, 35–37
iron regulation, 106
prolylhydroxylase inhibitors, 41
VHL binding, 39

Induced pluripotent stem cell (iPSC)
banking of cells, 378–379
costs of therapy, 377–378
differentiation protocols, 376–377
disease modeling applications
hemoglobinopathies, 374–375
overview, 374
gene therapy, 377
pluripotency factors, 373–374
iPSC. See Induced pluripotent stem cell

Iron
accumulation rate in thalassemia, 272
assessment
cardiac concentration, 273–274
extrahepatic iron, 274
ferritin in serum, 272–273
liver concentration, 273
nontransferrin-bound iron, 274

Cellular iron
functions, 103
transport, 103–105
uptake, 103

Disorders
anemia of inflammation, 109
deficiency, 109
hereditary hemochromatosis, 109–110
iron-refractory iron deficiency anemia, 109
overload
erthropoiesis inefficiency, 110
transfusion, 109
Index

O
Osteoporosis, β-thalassemia, 208, 221
Oxygen binding, hemoglobin variants
 binding curve, 391
 high oxygen affinity variants, 393–395
 low oxygen affinity variants, 395
P
p300
 erythropoietin gene regulation, 37–38
 GATA interaction, 71–72
Pauling, Linus, 5
PBGS. See Porphobilinogen synthase
PCBP, See Poly(RC)-binding proteins
Perutz, Max, 3–5
Pluripotent stem cell. See Embryonic stem cell; Induced pluripotent stem cell
Poly(RC)-binding proteins (PCBPs), iron binding, 103–104
Porphobilinogen synthase (PBGS), heme synthesis, 117–118
PPOX. See Protoporphyrinogen oxidase
Pregnancy
 β-thalassemia intermedia considerations, 221
 iron deficiency, 427–428
Protoporphyrinogen oxidase (PPOX)
 heme synthesis, 120
 multienzyme complexes, 122–123
PU.1, erythropoiesis regulation, 23
Pulmonary hypertension, hemoglobin binding of nitric oxide, 411, 413
Pulmonary hypertension, β-thalassemia intermedia, 219–220
Pyrimidine 5’ nucleotidase, hemoglobin E
 β-thalassemia and deficiency, 238
R
Red blood cell. See Erythropoiesis
RUNX1, erythropoiesis regulation, 23
S
SCA. See Sickle cell anemia
SCF. See Stem cell factor
SCID. See Severe combined immunodeficiency
 Severe combined immunodeficiency (SCID), gene therapy, 356–357
Sickle cell anemia (SCA)
 clinical features
 adults, 306
 early years, 303–304
 first year, 303
 late childhood, 304–305
 overview, 306
 genotype–phenotype correlations, 302–303
 geographic distribution and variability, 301–302, 308
 hematoietic stem cell transplantation
 hemoglobin F increase after failed transplantation, 350–351
 mixed chimerism, 349–350
 outcomes, 348–349
 overview, 347–348
 regimen modification, 350
 heritability, 315–316
 history of study, 5–6, 9
 malaria tolerance mechanisms, 409
 management
 acute chest syndrome, 331–332
 acute splenic sequestration
 adult care, 334
 crisis, 331
 decitabine, 336
 education, 327–328
 hemoglobin F induction, 336
 hemoglobin-based oxygen carrier therapy, 406–407
 hydroxyurea, 335–336
 infection prevention and management, 328–329
 pain control, 329–331
 stroke management and screening, 332–334
 transfusion, 334–335, 374–375
 mortality
 causes, 308
 infants, 326
 survival rates, 306
 neonatal screening, 326–327
 overview, 138–139
 phenotype determination, 314–315
 pluripotent stem cell modeling of disease, 375–376
 prevention, 309
 severity determinants
 α-thalassemia, 307
 environment, 307–308
 genetics, 308, 318–320
 hemoglobin F levels, 88, 307
 mean cell hemoglobin concentration, 307
 Sideroblastic anemia. See X-linked sideroblastic anemia
 SOX6, hemoglobin F induction studies, 92–93
SOX8, α-thalassemia deletion, 191

Splenectomy
β-thalassemia intermedia management, 222–223
hemoglobin H disease management, 251

Stem cell. See Embryonic stem cell; Hematopoietic stem cell transplantation; Induced pluripotent stem cell

Stem cell factor (SCF), erythropoiesis role, 20

Stroke
β-thalassemia intermedia, 219
sickle cell anemia
 genetic variants, 320
 management and screening, 332–334

T

TAL1
 GATA interactions, 73
 globin gene expression regulation, 60
 hemoglobin F induction studies, 91

Thalassemia. See also specific thalassemias
 history of study, 5–9
 molecular diagnosis, 291
 prevention programs
 genetic counseling, 293
 population control, 286–287
 preimplantation diagnosis, 294–295
 prenatal diagnosis, 293–295
 prospects, 296

Thromboembolism
β-thalassemia intermedia, 216–219
hemoglobin E β-thalassemia, 236

Transferrin
 iron storage, 102
 receptor, 103

Transfusion
 animal studies of old blood transfusion, 407–409
 β-thalassemia intermedia management, 222
 hemoglobin E β-thalassemia management, 239–240
 iron overload induction, 109
 red blood cell storage lesion, 407
 sickle cell anemia management, 334–335, 374

U

UGT1A1, sickle cell anemia variants, 320

Umbilical cord, delayed clamping for iron deficiency anemia prevention, 430–431

Uniparental isodisomy, β-thalassemia, 178

UROD. See Uroporphyrinogen decarboxylase

Uroporphyrinogen decarboxylase (UROD), heme synthesis, 118–119

Uroporphyrinogen synthase (UROS)
 heme synthesis, 118
 multienzyme complexes, 123

UROS. See Uroporphyrinogen synthase

V

VHL, hypoxia-inducible factor binding, 39

X

X-linked protoporphyria (XLPP)
 ALAS-2 mutation, 127
 overview, 127
 pathophysiology, 122

X-linked sideroblastic anemia (XLSA)
 ALAS-2 mutation, 124, 127–128
 overview, 127–128

XLPP. See X-linked protoporphyria

XLSA. See X-linked sideroblastic anemia

XMN1, polymorphisms and β-thalassemia impact, 203

XPD, β-thalassemia mutation, 177