Index

A
ADAM9, 213
ADAM10, 215
ADAM17
   breast remodeling role, 213, 215–216
   epidermal growth factor receptor substrates, 91
   knockout mouse, 77
Akt, phosphatidylinositol 3-kinase signaling, 146–147
ALD1. See Aldehyde dehydrogenase
Aldehyde dehydrogenase (ALD1), mammosphere enrichment, 63
Androgen receptor (AR), breast development role, 91
Apoptosis, multiphoton microscopy studies, 309
AR. See Androgen receptor

B
Basement membrane. See Extracellular matrix
B cell, breast cancer role, 240–241
β-Lactoglobulin (BLG), promoter for transgenic mice, 26
Bioluminescence imaging (BLI), breast cancer imaging, 300
Bissel, Mina, 132
Bittner, John J., 17
BLG. See β-Lactoglobulin
BLI. See Bioluminescence imaging
BMPs. See Bone morphogenetic proteins
Bone morphogenetic proteins (BMPs), ductal branching morphogenesis role, 185–186
BRCA1
   knockout mouse, 34–35
   mutations in breast cancer, 152–153
   protein–protein interactions, 153
   transgenic mouse models of breast cancer, 154–155
BRCA2
   knockout mouse, 35, 153–154
   mutations in breast cancer, 153
   transgenic mouse models of breast cancer, 155
Breast cancer. See also Historical perspective, mouse mammary cancer research; Invasion; Metastasis
BRCA transgenic mouse models
   BRCA1, 154–155
   BRCA2, 155
   breast development relevance, 187–188
   cytokine signaling, 98–100
DNA methylation studies
   hypermethylated genes, 282
   hypomethylated genes, 282–284
   transformed breast epithelial cells, 280–282
extracellular matrix
   breakdown
      basement membrane crossing, 114–115
      in situ carcinoma, 114
      metastasis, 115–116
      stromal invasion, 115
   density and alignment in tumor progression, 135–137
   estrogen extracellular matrix assembly control and cancer implications, 135
   therapeutic targeting, 116
functional genetics studies
   chemotherapy studies, 271–272
   gain-of-function screens, 268–269
   loss-of-function screens, 265–268
   phenotype defining, 270–272
   prospects for study, 274
   therapeutic targets
      pathway gene identification, 269–270
      synthetic lethal interactions, 272–274
genomic alterations associated with intrinsic subtypes
   clinical utility, 255–256
   metastasis, 256–258
   overview, 254–255
histone modification, 286–287
human breast stem cell hierarchy in origin prediction, 66
imaging
   macroscopic imaging techniques, 294–300
   microscopic imaging techniques
      apoptosis and therapeutic response studies, 309
      fate mapping of tumor cells, 308–309
      intraoperative imaging, 309–310
      invasion and metastasis studies, 305–308
      mammary models, 300–301
      mitosis studies, 309
      multiphoton microscope design and software, 301–304
      types, 300
      overview, 293–294
      reporters and labels, 304–305

© 2011 by Cold Spring Harbor Laboratory Press
Index

Breast cancer (Continued)

CDK10, breast cancer studies, 272
CDKN2A, hypermethylation in breast cancer, 282
Chromatin remodeling. See DNA methylation; Histone modification
Collagen. See Extracellular matrix
Colony-stimulating factor-1 (CSF-1)

DCIS. See Ductal carcinoma in situ
Development. See Breast development
DNA methylation

E-cadherin, knockout mouse, 35–36
ECM. See Extracellular matrix
EGFR. See Epidermal growth factor receptor
EMT. See Epithelial-to-mesenchymal transition
Eosinophil, pubertal mammary development role, 226–231
Epidermal growth factor receptor (EGFR). See also Erbb2

CAE. See Carcinoma-associated fibroblast
Carcinogens, history of studies in mice, 4–5
Carcinoma-associated fibroblast (CAF), extracellular matrix changes, 136–137
Cardiff, Robert, 29

© 2011 by Cold Spring Harbor Laboratory Press
macrophage delivery of ligands in breast cancer, 237
mammary cancer development role, 93
Epigenetics. See DNA methylation; Histone modification
Epithelial cell
cell–cell interactions, 210
stem cells. See Human breast stem cells; Murine mammary stem cell
types in mammary gland, 208–209
Epithelial-to-mesenchymal transition (EMT)
breast development, 187
breast epithelium, 64
history of study, 16, 20
interleukin-6 induction, 99
Erbb2
signaling effects on cell cycle progression and transcription factor networks, 151
transgenic mouse models, 30–31, 93, 147–149
Estrogen
extracellular matrix assembly control and cancer implications, 135
receptor
coregulators, 79–82
knockout mice
ERα, 73–74
ERβ, 74
signaling, 76–77
structure, 78–79
regulation of release, 72–73
transforming growth factor-β regulation, 197
Ets2, PTEN effects, 171
Extracellular matrix (ECM)
cell force
contractile pathways in generation, 128–129
measurement, 127–128
cell–matrix interactions
breakdown in breast cancer
basement membrane crossing, 114–115
in situ carcinoma, 114
metastasis, 115–116
stromal invasion, 115
breast development role
branching ductal morphogenesis, 108–110
ductal patterning, 111–113
polarized mammary duct formation, 110–111
mammary differentiation role
integrin-prolactin cross talk, 113–114
involution, 114
overview, 105–108
therapeutic targeting in cancer, 116
density and alignment in tumor progression, 135–137
hormonal control of assembly and cancer implications, 135
mechanical properties
developmental changes
fibronectin regulation of mechanical properties, 133–135
overview, 132–133
focal complexes as mechanical sensors, 129–131
mechanical signaling regulation of proliferation and differentiation, 131–132
stiffness, 126–127
tensile force dynamics in mammary gland, 126
transforming growth factor-β regulation, 124–125
tumor invasion and mechanosignaling, 137–138
receptors on cells, 124
stromal modifiers, 212–214
synchronizing parenchymal, stromal, and extracellular matrix homeostasis, 218
transforming growth factor-β response, 196

F
FAK. See Focal adhesion kinase
FGFs. See Fibroblast growth factors
Fibroblast growth factors (FGFs)
breast development role, 77, 90–91, 212
receptors
mammary cancer development role, 92–94
types and ligands, 88–89
specification of mammary line, 180–182
Fibronectin (FN), regulation of extracellular matrix mechanical properties, 133–135
Filamin, mechanical sensor, 11
Fluorescence molecular tomography (FMT), breast cancer imaging, 296, 300, 304
FMT. See Fluorescence molecular tomography
FN. See Fibronectin
Focal adhesion kinase (FAK)
cell contraction regulation, 129
mechanical sensor, 131
tumor invasion role, 137
FSP1, stromal fibroblast function, 171

G
Gain-of-function screens, breast cancer, 268–269
GATA-3
breast development role, 96–97, 212
mammary stem cell regulation in mouse, 50
GH. See Growth hormone
Growth hormone (GH)
breast development role, 91, 211
receptor knockout mouse, 74
regulation of release, 72–73

© 2011 by Cold Spring Harbor Laboratory Press
Index

H
Halberg, Franz, 17
HAN. See Hyperplastic alveolar nodule
Hedgehog, mammary stem cell signaling in mouse, 50
HIM xenograft. See Human in mouse (HIM) xenograft
Histology, mammary gland, 208–210
Histone modification
  breast cancer versus normal epithelial differentiation, 286–287
  combinatorial variations associated with gene transcription, 284–286
DNA methylation relationship in gene silencing, 287–288
  prospects for study, 288
Historical perspective, mouse mammary cancer research
  carcinogen studies, 4–5
  early years, 1–2, 14–16
  first description, 14–15
  genetic studies, 4
  hormone studies, 2–3
  human significance, 9–10, 20–21
  inbred mouse studies, 17
  mammary stem cells, 18–19, 41–42
  mouse mammary tumor virus studies, 3–5, 8, 13–14, 17–18
  pathobiology of tumorigenesis, 5–7
  timeline, 15
  transplantation studies, 7–9, 18–19
Human breast stem cell
  breast development, 56–58
  cell line studies, 60–62
  chemotherapy effects on cancer stem cells, 155–156
  cytokeratin staining patterns in normal and neoplastic breast tissue, 59–60
  epithelial stem cell identification, 62–63
  profiling, 64–66
  hierarchy in breast cancer origin prediction, 66
  histone modification, 286
  mammary remodeling role, 214–215
  mammosphere culture, 63–64
  metastasis genomics studies, 259
  primary culture studies, 58–59
Human in mouse (HIM) xenograft, history of study, 8–9
Hyperplastic alveolar nodule (HAN), history of study, 6–7

I
IGFs. See Insulin-like growth factors
IKBKE, breast cancer studies, 268
IL-6. See Interleukin-6
ILC. See Invasive lobular carcinoma
Inbred mouse strains, origins, 14, 16
Inflammation, tumor progression role, 170, 172–173
Insulin, receptor, 90
Insulin-like growth factors (IGFs)
  binding proteins, 90, 94, 270
  breast development role
    IGF-1, 90–91, 211
    IGF-2, 78
  mammary cancer development role, 93–94
  receptors, 89–90
Integrins
  oncogene cross talk in mammary tumor progression, 150–151
  prolactin cross talk in mammary differentiation, 113–114
Interleukin-6 (IL-6), breast cancer role, 98
Invasion
  cell–matrix interactions, 115
  extracellular matrix mechanosignaling, 137–138
  multiphoton microscopy studies, 305–306
Invasive lobular carcinoma (ILC), E-cadherin knockout mouse, 35–36
Involution
  cell–matrix interactions, 114
  immune cell function, 214, 232–234
  mechanisms, 208

J
JAK/Stat signaling
  cytokine receptor families, 95–96
  mammary cancer development role, 95, 98–100
Stats
  breast cancer role, 98–100
  breast development role, 96–98
  types, 96

K
Keratin-5, staining patterns in normal and neoplastic breast tissue, 59–60
Keratin-14
  promoter for transgenic mice, 29
  staining
    breast development, 56–57
    patterns in normal and neoplastic breast tissue, 59
Keratin-19, staining
  breast development, 56–57
  patterns in normal and neoplastic breast tissue, 59–61
Kinesins, breast cancer expression studies, 269
Knockout mouse
  ADAM17, 77
  BRCA1, 34–35
  BRCA2, 35, 153–154
Index

Mast cell
- lactation role, 232
- pubertal mammary development role, 230
Matrix metalloproteinases (MMPs)
- mammary remodeling role, 213–214
- master signals, 216–218
- paracrine signaling, 215–216
- synchronizing parenchymal, stromal, and extracellular matrix homeostasis, 218
- tissue inhibitors, 213
- tumor microenvironment facilitation, 218–219
- types and sources in mammary gland, 213
MDM2 inhibitors, 272
- p53 interactions, 151–152
Metastasis
- cell–matrix interactions, 115–116
- genomic alterations associated with intrinsic breast cancer subtypes, 256–258
- mouse mammary tumors, 20
- multiphoton microscopy, 305–308
Methylation-specific digital karyotyping (MSDK), 279
Microenvironment
- breast development role, 164–166
- matrix metalloproteinases and tumor microenvironment facilitation, 218–219
- nonmammary stem progenitor cell regulation, 49
- prospects for study, 173
- tumor abnormalities
  - clinical relevance in tumorigenesis, 171–173
  - functional relevance in tumorigenesis, 169–170
  - metastasis, 166–169
- tumor mouse models, 36, 170–171
MINO model. See Mammary intraepithelial neoplasia outgrowth (MINO) model
MIW. See Mammary Imaging Window
MLC. See Myosin light chain
MMFs. See Matrix metalloproteinases
MMTV. See Mouse mammary tumor virus
Mouse mammary tumor virus (MMTV)
- carcinogen interactions, 5
- history of study, 3–5, 8, 13–14, 17–18
- insertion sites, 18
- promoter for transgenic mice, 26, 29, 31, 147–149
MPM. See Multiphoton microscopy
MRI. See Magnetic resonance imaging
MSDK. See Methylation-specific digital karyotyping
Mst1, mammary bud development role, 185
Mst2, mammary bud development role, 185, 187
Multiphoton microscopy (MPM)
- advantages, 300
- breast cancer applications
  - apoptosis and therapeutic response studies, 309
  - correlating tumor cell behavior with gene expression and markers of metastatic risk, 306, 308

M
Macrophage
- breast cancer role, 236–237
- involution role, 233
- lactation role, 232
- mammary remodeling role, 214
- pubertal mammary development, 226–228
Magnetic resonance imaging (MRI), breast cancer imaging, 294, 296, 304–305
Mammary bud, maturation, 183–185
Mammary Imaging Window (MIW), 301–302
Mammary intraepithelial neoplasia outgrowth (MINO) model, 32–33, 37
Mammosphere culture, human breast stem cells, 63–64

L
Lactation. See also Prolactin
- leukocyte function, 231–232
- progesterone role, 207–208
Lathrop, Abbie, 16
LCIS. See Lobular carcinoma in situ
Lef1
- knockout mouse, 183
- mammary bud development role, 184
- placode development role, 183
Leptin, knockout effects on breast development, 76
Little, Clarence Cook, 1, 16–17
Lobular carcinoma in situ (LCIS), 36
Loss-of-function screens, breast cancer, 265–268
Lrp6, ductal branching morphogenesis role, 185
Lyden, David, 167

M
Macrophage
- breast cancer role, 236–237
- involution role, 233
- lactation role, 232
- mammary remodeling role, 214
Magnetic resonance imaging (MRI), breast cancer imaging, 294, 296, 304–305
Mammary bud, maturation, 183–185
Mammary Imaging Window (MIW), 301–302
Mammary intraepithelial neoplasia outgrowth (MINO) model, 32–33, 37
Mammosphere culture, human breast stem cells, 63–64
Mast cell
- lactation role, 232
- pubertal mammary development role, 230
Matrix metalloproteinases (MMPs)
- mammary remodeling role, 213–214
- master signals, 216–218
- paracrine signaling, 215–216
- synchronizing parenchymal, stromal, and extracellular matrix homeostasis, 218
- tissue inhibitors, 213
- tumor microenvironment facilitation, 218–219
- types and sources in mammary gland, 213
MDM2 inhibitors, 272
- p53 interactions, 151–152
Metastasis
- cell–matrix interactions, 115–116
- genomic alterations associated with intrinsic breast cancer subtypes, 256–258
- mouse mammary tumors, 20
- multiphoton microscopy, 305–308
Methylation-specific digital karyotyping (MSDK), 279
Microenvironment
- breast development role, 164–166
- matrix metalloproteinases and tumor microenvironment facilitation, 218–219
- nonmammary stem progenitor cell regulation, 49
- prospects for study, 173
- tumor abnormalities
  - clinical relevance in tumorigenesis, 171–173
  - functional relevance in tumorigenesis, 169–170
  - metastasis, 166–169
- tumor mouse models, 36, 170–171
MINO model. See Mammary intraepithelial neoplasia outgrowth (MINO) model
MIW. See Mammary Imaging Window
MLC. See Myosin light chain
MMFs. See Matrix metalloproteinases
MMTV. See Mouse mammary tumor virus
Mouse mammary tumor virus (MMTV)
- carcinogen interactions, 5
- history of study, 3–5, 8, 13–14, 17–18
- insertion sites, 18
- promoter for transgenic mice, 26, 29, 31, 147–149
MPM. See Multiphoton microscopy
MRI. See Magnetic resonance imaging
MSDK. See Methylation-specific digital karyotyping
Mst1, mammary bud development role, 185
Mst2, mammary bud development role, 185, 187
Multiphoton microscopy (MPM)
- advantages, 300
- breast cancer applications
  - apoptosis and therapeutic response studies, 309
  - correlating tumor cell behavior with gene expression and markers of metastatic risk, 306, 308

© 2011 by Cold Spring Harbor Laboratory Press
Multiphoton microscopy (MPM) (Continued)
  fate mapping of tumor cells, 308–309
  intraoperative imaging, 309–310
  invasion and metastasis, 305–307
  mitosis studies, 309
  microscope design, 301–303
  reporters, 304
  software for 4D imaging, 302–303
  techniques, 300–301
Murine mammary stem cell
  epithelial cell hierarchy
    hormonal regulation, 47
    overview, 45–47
    parity-identified cells, 47–48
  history of study, 18–19, 41–42
  isolation, 43–45
  mammary remodeling role, 214–215
  markers, 55
  morphological evidence in epithelium, 42–43
  nonmammary stem progenitor cell regulation by microenvironment, 49
  prospects for study, 50–51
  regulators, 49–50
  template DNA selective segregation, 48–49
Myeloid suppressor cells, breast cancer role, 237
Myosin light chain (MLC), cell contraction, 129

N
Notch, mammary stem cell signaling in mouse, 50
Nutlin-3, breast cancer studies, 272

O
Oncogenes. See specific genes

P
p53
  cell cycle regulation, 151–152
  gene. See TP53
  mammary stem cell self-renewal role in mouse, 50
  MDM2 interactions, 151–152
p130Cas, mechanical sensor, 129–131
PAK-1, SRC-3 as substrate, 81
Parathyroid hormone-related protein (PTHrP)
  ductal branching morphogenesis role, 185–186
  mammary bud development role, 184, 211
PARP. See Poly(ADP-ribose) polymerase
PET. See Positron emission tomography
Phosphatidylinositol 3-kinase (PI3K), signaling in cancer, 146–147
PI3K. See Phosphatidylinositol 3-kinase
Pierce, Barry, 19
PITX1, breast cancer studies, 270–271
Placode, development, 183, 212
Pollard, Jeff, 171
Poly(ADP-ribose) polymerase (PARP), inhibitor sensitization via BRCA deficiency, 155
Positron emission tomography (PET), breast cancer imaging, 294, 296, 304
Progesterone
  lactation role, 207–208
  receptor
coregulators, 79–82
  estrogen induction, 211
  knockout mouse, 74
  signaling, 77–78
  structure, 78–79
  regulation of release, 72–73
Prolactin
  integrin-prolactin cross talk in mammary differentiation, 113–114
  receptor
knockout mouse, 74
  signaling, 77–78
  regulation of release, 72–73
PTEN
  Ets2 effects, 171
  knockout mouse, 147
  loss in breast cancer, 64, 66
  phosphatidylinositol 3-kinase antagonism, 146
PTHRP. See Parathyroid hormone-related protein

R
Radiation, history of cancer induction studies, 5
RANKL, signaling in breast development, 77–78
RB. See Retinoblastoma protein
Remodeling, mammary gland. See also Matrix metalloproteinases
epithelial morphogens and inhibitors, 211–212
  immune cells, 214
  master signals, 216–218
  paracrine signaling, 215–216
  stem cells, 214–215
  stromal extracellular matrix modifiers, 212–214
  synchronizing parenchymal, stromal, and extracellular matrix homeostasis, 218
systemic mammogens, 210–211
REST, breast cancer studies, 271
Retinoblastoma protein (RB), cell cycle regulation, 151
Rho
cell contraction regulation, 129
  mammary bud development role, 184
RNA interference, screens in breast cancer, 265–270
ROCK, cell contraction regulation, 129

S
SDPP. See Stroma-derived prognostic predictor
Sgroi, Dennis, 168
Index

ShcA, signaling in tumor progression, 150
Single Sample Predictor (SSP), 248
SMADs, transforming growth factor-β signaling, 192–194
Snell, George, 17
c-Src, signaling in tumor progression, 150
SRC coactivators
  SRC-3 level and activity regulation, 80–82
  steroid hormone receptor regulation, 80
SSP. See Single Sample Predictor
Stat. See JAK/Stat signaling
Stem cell. See Human breast stem cell; Murine mammary stem cell
Stevens, Roy, 19
Stroma-derived prognostic predictor (SDPP), 172
Synthetic lethality, breast cancer studies, 272–274

T
TACS. See Tumor associated collagen signatures
Talin, mechanical sensor, 129–130
Tbx3, deficiency and ulnar-mammary syndrome, 182
T cell, breast cancer role, 238–240
TDLU. See Terminal ductal-lobular unit
TEB. See Terminal end bud
Terminal ductal-lobular unit (TDLU), 56, 238
Terminal end bud (TEB), development, 77, 90–92,
  133, 206, 208–210, 213, 227–231
TGF-β. See Transforming growth factor-β
TIMPs. See Matrix metalloproteinases
TP53
  knockout mouse, 33–34
  mutations in cancer, 152
Transforming growth factor-β (TGF-β)
  activation, 192
  breast cancer studies, 198–200
  breast development role, 207, 212
  breast remodeling role, 212, 216
  epigenetic regulation, 200
  estrogen regulation, 197
  extracellular matrix response, 196
  human breast stem cell signaling, 66
  knockout mouse, 170, 198
  mammary distribution, 195–196
  prospects for study, 200–201
  receptors, 192, 198–199
  signaling, 192–194
  transgenic mice, 196–197
Transgenic mouse
  BRCA mutant models of breast cancer
  BRCA1, 154–155
  BRCA2, 155
  Erbb2 models, 30–31, 93, 147–149
  mammary-specific promoters, 26, 29
  transforming growth factor-β, 196–197
Transplantation models
  historical perspective, 7–9, 18–19
  human in mouse xenograft, 8–9
  overview, 31–32
Tumor associated collagen signatures (TACS), 136
Tumor suppressor genes. See specific genes
TWIST, epithelial-to-mesenchymal transition mediation, 99
Two-photon microscopy. See Multiphoton microscopy

V
Vascular endothelial growth factor (VEGF)
  matrix metalloproteinase regulation, 216
  metastasis genomics signature, 258–259
  myeloid cell delivery, 236
VEGF. See Vascular endothelial growth factor

W
WAP. See Whey acidic protein
Whey acidic protein (WAP), promoter for transgenic mice, 26
Wnt
  mammary bud development role, 184, 186
  mammary stem cell signaling in mouse, 50
  placode development role, 183
  specification of mammary line, 180

© 2011 by Cold Spring Harbor Laboratory Press