Index

Page references followed by b, f, and t denote boxes, figures, and tables, respectively.

A
Abdominal laparotomy, acquisition of mouse tumor biopsies through (protocol), 440–449
discussion, 446–449
evaluation of tumor location and vascularity, 447
KPC model of pancreatic ductal adenocarcinoma (case study), 446–447
mouse anesthesia, 447–448
outcome, 448–449, 448f
materials, 440–442, 442f
method, 442–446
advance preparation, 442–443, 443f
animal preparation, 443–444
postoperative care, 445–446
surgery, 444–445, 444f
troubleshooting, 446
Acids
disposal of, 501
safe handling of, 500, 503
ACK (ammonium-chloride-potassium) lysis buffer, 385, 397
actin promoter, 145
Acute lymphoblastic leukemia (ALL), 257, 257f
Acute myelogenous leukemia (AML)
IL27 efficacy testing, 258
NSG mice with human PDX tumors as models for testing drug efficacy, 257, 257f
tumor-initiating cells (TICS), 260
Acute promyelocytic leukemia (APL), 6–7, 7f, 436
genetic heterogeneity of, 456
sequence of cancer genome of mice and humans, 493–494
Adams, Jerry, 3, 22
ADC (apparent diffusion coefficient), 329, 341
Adenomatous polyposis coli (APC) tumor suppressor. See Apc
Adenovirus
gene delivery, 111–112, 458
in vivo delivery of lenti-Cre or aden-Cre into mice using intranasal instillation (protocol), 119–121
materials, 119–120
method, 120
recipe, 121
troubleshooting, 120–121
Adenovirus with Flp recombinase (Ad-Flopo), 40
ADT (androgen deprivation therapy), 11
Adult stem cells, culturing from mouse small intestinal crypts (protocol), 417–421
discussion, 419–420
materials, 417–418
method, 418–419
culture of isolated crypts, 418–419
dissociation and culture of single cells, 419
isolation of crypts, 418
recipes, 420
Aftatinib, 436
Akt, 206
Pten conditional knockout mouse models, 41–42
reporters and, 320
Snail expression induced by, 135
tissue recombination models and, 231, 233f, 234
Albumin promoter, 145
Alb-Cre, 42, 43
Alcohol fixatives, 298, 298f
Apoptosis, immunohistochemical markers of, 389
Aperio Spectrum (eSlide Manager) database, 468
APL. See Acute promyelocytic leukemia
Apoptosis, immunohistochemical markers of, 433f
Arabidopsis
light oxygen voltage (LOV) domain-containing proteins, 111
Arf
deletion of, 204
lung cancer and, 65
shRNA targeting of, 198
skin cancer and, 55
Aristotelian logic, 469
Aromatic amines, as carcinogens, 53
Artiga, Carlos, 351
As2O3, 6–7, 8
ATCC (American Type Culture Collection), 503
Athymic Focitm (nude) mice, 254, 257f
ATM kinase, 206
ATP, bioluminescence and, 343, 345
ATRA (all-trans retinoic acid), 7, 436
Atypical alveolar hyperplasias, 96
Autoclave safety, 500
Avertin, 120, 249
Avertin (20 mg/mL) (recipe), 121
Avian leukemia virus, 22
Avian sarcoma leukemia virus subgroup A (ASLV-A), 155. See also RCAS (replication-competent avian-leukosis virus)
Avidin–biotin complex (ABC) technique, immunohistochemistry staining of mouse tissues using the (protocol), 304–307
discussion, 306–307
material, 304–305
method, 305–306
recipes, 307
troubleshooting, 306
Azo dyes, as carcinogens, 52
Azoxymethane (AOM), 56
B
Bacteria
biochemical safety procedures, 502–503
shipping requirements, 503
Bacteriophytochrome, 313
Bannayan-Zonana syndrome (BZS), 29, 41
Bases
disposal of, 501
safe handling of, 500, 503
Bayh-Dole Act, 4
B-cell freezing medium (recipe), 213
B-cell medium (recipe), 213, 222
BcIX-L, 349
Bcr-Abl transgene, 133, 134, 206
Benzo[a]pyrene, 52
β-catenin
APC conditional knockout models and, 42–43
in hepatocellular tumors, 132
β-galactosidase reporter gene, 146
in T1-weighted imaging, 316
β1-integrin, 349
β-lactoglobulin (BLG) promoter, 35, 37
β-naphtaleneflavone, 111
bFGF inhibitors, 9
BFS growth medium (recipe), 242, 246
Biological safety procedures, 502–503
Bioluminescence imaging (BLI) analysis of retrovirus-transduced cells with, 367
bioluminescent reactions, 311f
data analysis and presentation, 346
key features, 311–312
overview, 310–312, 311f, 313f, 330–331, 330f
properties of luciferin, 345
quantitative bioluminescence imaging of mouse tumor models (protocol), 343–346
discussion, 345–346
© 2014 by Cold Spring Harbor Laboratory Press
Blanpain, Cedric, 350
Bladder cancer
Bishop, Mike, 6
Biopsy punch, 445
Biopsy forceps, 441, 442f
Biomarker discovery, 479–483
assays of tumor-derived nucleic acids, 482
blood and plasma collection for molecular profiling, 483
circulating tumor cells, 483
GEMMs as source of circulating cancer markers, 480
GEMMs metabolic profiling, 480–481
immune response to tumor development and, 481–482
omics approaches for, 481b
value of GEMMs for, 479–480
omics approaches for, 481b
value of GEMMs for, 479–480
Biopsy
acquisition of mouse tumor biopsies through abdominal laparotomy (protocol), 440–449
discussion, 446–449
evaluation of tumor location and vascularity, 447
KPC model of pancreatic ductal adenocarcinoma (case study), 446–447
mouse anesthesia, 447–448
outcome, 448–449, 448f
materials, 440–442, 442f
method, 442–446
advance preparation, 442–443, 443f
animal preparation, 443–444
postoperative care, 445–446
surgery, 444–445, 444f
troubleshooting, 446
in therapeutic studies, 434
Biopsy forceps, 441, 442f
Biopsy punch, 445
Bishop, Mike, 6
Bladder cancer
industry-related, 52–53
patient-derived xenograft (PDX), 261–262, 271
Blanpain, Cedric, 350
BLI. See Bioluminescence imaging
Blood and plasma collection for molecular profiling, 483
Bmi-1, 206
Body temperature support during imaging, 327
Bone marrow, isolation of HSCs from, 211
Bovine keratin 5 promoter, 146
Bone marrow, isolation of HSCs from, 211
Bone tumors induced by SV40 large T-antigen, 18–20
BRCA1 conditional mutant mouse models, 34–40, 36f
BRCA2 conditional mutant mouse models, 34–40, 36f
BreakDancer (software tool), 492
Breast cancer
cleared mammary fat pad transplantation assay for mammary epithelial organogenesis (protocol), 247–251
cleared MIP transplantation, 249–250, 250f
dissociation of mouse mammary tissue, 248–249, 249f
materials, 247–248
method, 248–250, 249f, 250f
recipes, 250–251
combinational therapy, 9
conditional knockout mouse models, 34–40, 36f
BRCA1 conditional mutant mouse models, 34–37, 34f, 35f
BRCA2 conditional mutant mouse models, 37
p53 LFS (loss-of-function) mouse models, 40
mammary fat pad as an orthotopic site for studying, 229–230
in MMTV-Myc mice, 4
models of metastasis, 349
mouse mammary tumor virus (MMTV) models, 20–21
reverse transcriptase PCR (RT-PCR), for cancer biomarker discovery, 483
sequence cancer genome of mice and humans, 493
tetracycline-regulated model system, 129, 131t
TNBC (triple-negative breast cancer), 37
Breast cancer metastasis suppressor 1, 349
cancer genome (protocol), 247–251
carcinogen-induced models, 9–10
tetracycline-regulated systems and, 137
early studies and the use of animals to identify, 52–53
Castle, William, 1
Catalog of Somatic Mutations in Cancer (COSMIC), 178
Caveolin-1, 349
C.B17-Prkdcscid (scid) mice, 254–255, 255t
CCL20, 258
CCL21, 260
CD40 agonist, 437
CD63, 258
CDK4, 258
CDKN1B (cyclin-dependent kinase inhibitor p27), 55–56
cDNA
in conditional knock-in alleles, 94f, 95
sequencing pools of fragments, 492
CD2 promoter, 146
CEA marker for colon cancer, 480
Cell surface markers, for immune cell populations, 387t
Center for Genomic and Translational Phenotyping (CGTP)
Image Archive Aperio database, 471
Center for Genomic Pathology, 287
central nervous system cancer, tetracycline-regulated model system for, 131t, 133
CEST (chemical exchange saturation transfer), 315–316
Cetuximab, 436
CFSE (carboxyfluorescein succinimidyl ester), 400
CGTP (Center for Genomic and Translational Phenotyping) Image Archive Aperio database, 471
Chemical carcinogenesis, 51–67
carcinogen bioassay, 51, 53–54, 57
carcinogen-induced models, 9–10
tetracycline-regulated systems and, 137
early studies and the use of animals to identify, 52–53
Cdkn2a locus, ablation of, 196
CDK11B (cyclin-dependent kinase inhibitor p27), 55–56
CDKN1B (cyclin-dependent kinase inhibitor p27), 55–56
Chemical carcinogenesis, 51–67
carcinogen bioassay, 51, 53–54, 57
carcinogen-induced models, 9–10
tetracycline-regulated systems and, 137
early studies and the use of animals to identify, 52–53
Cdkn2a locus, ablation of, 196
CDKN1B (cyclin-dependent kinase inhibitor p27), 55–56
protocols
induction of colon cancer with
1,2-dimethylhydrazine, 66–67
discussion, 67
materials, 67
method, 66–67
induction of liver tumors with N-ethyl-N-nitrosourea or N-nitrosodithylamine, 61–62
discussion, 62
materials, 61
method, 62
induction of lung tumors with urethane, 63–65, 64f
discussion, 64–65, 64f
materials, 63
method, 63–64
Chemical exchange saturation transfer (CEST), 315–316
Chemicals, properties of common hazardous, 503–504
Chemical safety assessment, 53–54
Chimera
chimeric tumor models, 203–226
synergic transplants with modified chimeric hematopoietic tumors (protocol), 219–223
multiallelic nongermline GEMM generation via ES cell rederivation, 198
Chimeric antigen receptor (CAR), 258
ChIP-chip, 493
ChIP-Seq, 493
Chk2 kinase, 206
Chronic myelogenous leukemia (CML), 261
Circadian effects, 85
Circulating tumor cells (CTCs) as diagnostic markers, 483
in genetically modified models of metastasis, 351–352
Cisplatin, 436
Clara cell secretory protein (CCSP) promoter, in tetracycline-regulated model system, 131
Clevera, Hans, 350
Clinical trials. See Trials
C-Met, in hepatocellular tumors, 132
CML (chronic myelogenous leukemia), 261
Circadian effects, 85
Circulating tumor cells (CTCs) in knock-in models of cancer, 93–97
in vitro delivery of lenti-Cre or adenovirus into mice using intranasal instillation, 119–121
materials, 119–120
method, 120
recipe, 121
troubleshooting, 120–121
producing and concentrating lenti-Cre for mouse infections, 116–118
materials, 116–117
method, 117–118
whole-mount X-gal staining of mouse tissues, 122–124
materials, 122–123
method, 123
recipes, 124
troubleshooting, 123
site-specific recombinases, 106–108
acutegene regulation of Cre activity, 111
dual recombinase technology, 112–113
transgenic expression of Cre, 108, 109f, 110f, 110t
validation of Cre activity, 112
viral delivery of Cre, 111–112
creating primary cell lines from lineage-labeled mouse models (protocol), 408–411
discussion, 410–411
materials, 408–409
method, 409–410
recipes, 411
troubleshooting, 410
organotypic culture of untransformed and tumorigenic primary mammary epithelial cells (protocol), 412–416
discussion, 414
materials, 412–413
method, 413–414
recipes, 415
troubleshooting, 414
three-dimensional organotypic culture of stratified epithelium (protocol), 422–426
discussion, 424
materials, 422–423
method, 423–424
recipes, 425–426
troubleshooting, 424
Epithelial-to-mesenchymal (EMT) transition, 135
development of, 284–285
immunohistochemistry, 238
isolating epithelial and epithelial-to-mesenchymal transition populations from primary tumors by FACS (protocol), 374–376
discussion, 376
materials, 374–375
method, 375–376
Rb conditionally mutant mouse models, 41
ErbB2 gene, 20, 24
ERG, tissue recombination models and, 231, 233f, 234
Erlotinib
generation of drug-resistant tumors using intermittent dosing of tyrosine kinase inhibitors in mice (protocol), 450–453, 452f
maximum tolerated dose (MTD) for, 432
for tumors with EGFR mutations, 138
maximum tolerated dose (MTD) for, 432
FACS (fluorescence-activated cell sorting) FACS-Canto, 387
Familial adenomatous polyposis (FAP), 30
"Fancy" mice, 1, 69, 70f
Farnesoid X receptor (FXR), 149
FDA (Food and Drug Administration) safe harbor, 5
FDG-PET, 327–328, 328f, 335–338
Ferritin, 315, 315f
Fibroblast growth factor 10 (FGF10), overexpression in urogenital sinus mesenchyme (UGSM) cells, 235
Field Tested Best Practice, 462, 466
5' splice donor trap, 94f, 95
Fixation
mouse tissue fixation (protocol), 297–299
data for common fixatives, 298t
discussion, 298–299
fixative choice, 298–299, 298t
materials, 297
method, 297–298
timing and duration of fixation, 299
postmortem changes stopped by, 285–286
in whole-mount X-gal staining of mouse tissues (protocol), 123
Fixative, choosing, 298–299, 299t
Flippase. See FLP recombinase
Flippase recognition target. See FRT sites
Flk1 promoter, TVA expression using, 160
Fliotillin-2, 349
Flow cytometry
analysis of immune cell subsets in tumor-bearing mice (protocol), 384–389
analysis of retrovirus-transduced cells in, 367
standardization and standard operating procedures for immune assays, 487
Flexed allele, 78f, 79, 108
Fgl-FRT recombinase system conditional gene mutation, 96, 106f, 107, 113
conditional knockout mouse models of cancer, 33, 40
recognition sequences and mechanisms of recombination, 106f recombinase-mediated cassette exchange, 194
Flp recombinase, 106f, 107, 107t, 113
drivers in models in pre-/-co-/postclinical trials, 458
Fluorescence-activated cell sorting (FACS) enrichment of mammary basal and luminal cells for cell-of-origin metastatic studies (protocol)
FACS sorting, 371, 372f
staining cells for FACS, 370–371
in isolating epithelial and epithelial-to-mesenchymal transition populations from primary tumors by FACS (protocol), 374–376
discussion, 376
materials, 374–375
method, 375–376
in multicolor flow cytometric analysis of immune cell subsets in tumor-bearing mice protocol, 386–387, 387t, 388t
Fluorescence imaging, 312–314, 313f
analysis of retrovirus-transduced cells with fluorescence microscopy, 367
overview, 331
strengths and limitations of, 326
Fluorescence minus one (FMO) strategy, 371
Fluorescence ubiquitination cell cycle indicator (FUCCI), 319
FUCCI (fluorescence ubiquitination cell cycle indicator), 319
FuGENE 6, 117
FXR (farnesoid X receptor), 149
G
γ-secretase inhibitor, 196
Gas containers, safe handling of, 500
Gastrointestinal stromal tumors (GISTs), 90
Gaussian kernel convolution (GKC) method, 436
for identification of transposon insertion sites, 177–178
G-CSF (granulocyte colony-stimulating factor), 260
Gefitinib, 138
Geldanamycin, 138
Gelman, to plug biopsy site, 445, 448, 448f
Gemcitabine, 433, 482
GEMMs. See Genetically engineered mouse models
Gene expression, facilitation of detection, 97–98
Gene-targeting technology
estrogen receptor (ER) regulatable system in, 144–146, 145f
history of, 4
"hit and run," 93
Genetically engineered mouse models (GEMMs). See also specific models
cancerogenesis, 51–52, 55–56, 57–58, 5
nongermline GEMMs
accelerating mouse model production using, 196, 197f
generation of multiallelic via ES cell rederivation, 197–198
preclinical drug testing, 7–9
RNAi and, 187–193
strengths and weaknesses of models of tissue recombination models for study of epithelial cancer, 231–235
tetracycline-regulated system, 125, 133–138
Genetic modifiers of cancer risk, chemical carcinogenesis models to identify, 56–57
Genetic screens in transplant models, 206–207
Genome. See Cancer genome
Genome Analysis Toolkit (software), 492
Hematopoietic cancer
HDACIs (histone deactylase inhibitors), 7
Hazardous chemicals, properties of common,
Haplinsufficient tumor suppression, 56
modifier allele, 56
Hcr
HBD (hormone-binding domain) fusions, 510
Handbook of Carcinogenic Potency and
Hanahan, Douglas, 21, 23
G KC (Gaussian kernal convolution) method, for
GISTs (gastrointestinal stromal tumors), 90
gene, 18–19
GH
GFP. See Green fluorescent protein
Hcs
Hepatocellular carcinoma (HCC), 132, 205.
Hepatocyte growth medium (recipe), 218
Hepatocyte growth factor (HGF) receptor, 235
Hg solution (recipe), 407
reconstitution of mice with modified HSCs
pathological examination, 277
NSG mice with human PDX tumors as
models for testing drug efficacy, 257, 257f
pathological examination, 277
reconstitution of mice with modified HSCs
(protocol), 209–214
discussion, 212–213
materials, 209–210
method, 210–212, 210f
Hepatoblasts, purification, culture, and retroviral
infection of, 216–217
Hepatocellular carcinoma (HCC), 132, 205.
See also Liver cancer
Pten conditional knockout models, 42
Hepatocyte growth factor (HGF) receptor, 235
Hepatocyte growth medium (recipe), 218
HEPES-buffered saline (HBS) precipitation
buffer (2 ÷)
(recipe), 368
Herpes simplex virus thymidine kinase, 18–19
HER2-targeted inhibitors, 134
High-glucose complete medium (recipe), 369
Histomount solution, 393
Histone deactylase inhibitors (HDACIs), 7
Homogenization
of spleen, 385, 397
of tumor tissue, 386, 398
Homologous recombination, 4, 90, 93, 98,
99f, 100
Hormone-binding domain (HBD) fusions,
143–144, 144f, 151
Housing and husbandry, 462
H1 promoter, 189
Hprt gene, 5
Htas gene, 57
HSCs. See Hematopoietic stem cells
Hsp90 inhibitors, 138
HSV-1- tk, 316
H-thymidine uptake, 399–400
HYDRA (software tool), 492
4-hydroxytamoxifen (4-OHT), 95, 96,
144, 151–152, 180
ICGC (International Cancer Genome
Consortium), 482, 489, 490–491l, 493, 495
IF buffer (recipe), 415
IFP1.4, 313–314
lgH enhancer, 133
IKMC (International Knockout Mouse
Consortium), 44
IL27 efficacy testing for acute myelogenous
leukemia (AML), 258
IL2rgnull mice, 253, 254, 256
Imaging, 325–346
considerations in designing clinical
trials, 459
18F-FDG-PET/CT imaging of drug-induced
metabolic changes in genetically
engineered mouse lung cancer
models (protocol), 335–338
discussion, 337
materials, 335–336
method, 336–337
in vivo using reporter transgenes, 309–320
bioluminescence imaging
key features, 311–312
overview, 310–312, 311f, 313f
fluorescence imaging, 312–314, 313f
magnetic resonance imaging (MRI),
314–315, 315f
overview, 309
positron emission tomography (PET),
315, 315f, 316–317
practical features of commonly used
reporter transgenes, 310t
versatility of reporter-transgene-based
imaging, 317–320
coexpression and reporter tagging
strategies, 318–319
constitutive expression used to
measure tumor burden, 317–318
overview of noninvasive imaging, 325–333
anesthesia and, 327
bioluminescence imaging, 330–331, 330f
CT, 327–328
experimental workflow, 332–333
fluorescence imaging, 331
general considerations, 327
MRI, 328–330, 329f
optical imaging, 330–331
PET, 327–328, 328f
physiological monitoring and control, 327
SPECT, 327–328
strengths and limitations of approaches,
326t
ultrasound, 331–332
Gordon, Jon W., 2
Good Laboratory Practice, 464
Glyoxal fixative, 298, 298t
Gliomas, RCAS-TV A system models of, 159–160
Glioblastoma
Gleevec. See
G solution (recipe), 407
reconstituting mice with modified
deconvoluting shRNA
assessing tumor engraftment
(protocol), 209–214
257, 257t
models for testing drug efficacy,
for identification and directed
insertion sites, 177–178
reconstituting mice with modified
stem cells (HSCs), 204
loss-of-function screening in
hematopoietic malignancies
(protocol), 225, 225f
in synergeic transplants with modified
chimeric hematopoietic tumors
protocol, 221–222, 222f
Gross specimen logic tree, 276f
G solution (recipe), 407
H
Hanahan, Douglas, 21, 23
Handbook of Carcinogenic Potency and
Genotoxicity Databases, 53
Hapteninsufficient tumor suppression, 56
Hatch-Waxman exemption, 5
Hazardous chemicals, properties of common,
503–504
HBD (hormone-binding domain) fusions,
143–144, 144f, 151
Hr modifier allele, 56
Hcs modifier allele, 331
HDACIs (histone deactylase inhibitors), 7
Heat shock protein, 143, 144f
Hematopoietic cancer/tumors
ex vivo manipulation of hematopoietic stem
cells (HSCs), 204
loss-of-function screening in hematopoietic
malignancies (protocol), 224–226
discussion, 226
materials, 224
method, 224–226, 225f
assessing tumor engraftment
efficiency, 225
deconvoluting shRNA
representation, 225–226
reconstituting mice with modified
liver stem cells, 225
troubleshooting, 226
NSG mice with human PDX tumors as models for
identification and directed
therapy toward tumor-initiating
cells (TICS), 259–261, 259t
NSG mice with human PDX tumors as
models for testing drug efficacy,
257, 257f
pathological examination, 277
reconstitution of mice with modified HSCs
(protocol), 209–214
discussion, 212–213
materials, 209–210
method, 210–212, 210f
preclinical magnetic resonance imaging in mouse cancer models (protocol), 339–342
discussion, 341–342, 342t
materials, 339–340
method, 340–341
sample protocol, 341b
quantitative bioluminescence imaging of mouse tumor models (protocol), 343–346
discussion, 345–346
materials, 343–344
method, 344
recipe, 346
troubleshooting, 344–345
for translational therapeutic studies, 435
Immune infiltrates, 487–488
Immune cell populations, cell surface markers
Imatinib, 134, 206, 261
Immunodeficient mouse models, 253–264
Immune system and immunity
Immunohistological assessment of immune cells in mouse tumor tissue (protocol), 390–395
discussion, 395
materials, 390–391, 391t
method, 391–393
recipe, 395
sample images, 394f
troubleshooting, 394
immunosurveillance, 381–382
multicolor flow cytometric analysis of immune cell subsets in tumor-bearing mice (protocol), 384–389
discussion, 387–388
materials, 384–385
method, 385–387, 387t, 388f
FACS analysis, 386–387, 387t, 388t
preparation of single-cell suspension
from solid tissue or tumor, 386
preparation of single-cell suspension from spleen, 385–386
troubleshooting, 387
myeloid-derived suppressor cell-mediated T-cell suspension assay (protocol), 396–400
discussion, 400
materials, 396–397
method, 397–400
iso1lation of Gr-1+ cells, 398–399
plate setup, 399t
preparation of single-cell suspensions
from spleens, 397–398
preparation of single-cell suspensions from tumors, 398
T-cell suspension assay, 399–400, 399t
troubleshooting, 400
Immunodeficient mouse models, 253–271
athymic Fox1nu (nude) mice, 254, 255t
C.B17-Prkdscid (scid) mice, 254–255, 255t
NOD.C.B17-Prkdscid (NOD-scid) mice, 255–256, 255t
NOD-Prkdscid IL2rgnull (NSG) mice, 254, 255t, 256–264, 257t, 259t, 262f
NODShi.Cg-Prkdscid IL2rgnull (NOG) mice, 256
NSG mice with human PDX tumors
for identification and directed therapy toward TICS, 259–261, 259t
for immunotherapy, 258–259
for testing drug efficacy, 256–257
hematological tumors, 257, 257t
solid tumors, 256–257, 257t
overview, 253–254
patient-derived xenograft (PDX), 254, 256–263, 257t, 262f
PDX programs, 261–263
at Jackson Laboratory, 261–262
remaining challenges and future directions
in, 263–264
subcapsular transplantation of tissue in the kidney (protocol), 268–271
discussion, 271
materials, 268–269
method, 269–270
troubleshooting, 270
Immunometric assay (protocol), 382
Immunohistochemistry
assessment of immune cells in mouse tumor tissue (protocol), 390–395
discussion, 395
materials, 390–391, 391t
method, 391–393
recipe, 395
sample images, 394f
troubleshooting, 394
in epithelial-mesenchymal transition (EMT) tumor, 283f
markers used to assess therapy response, 433t
staining of mouse tissues using the avidin-biotin complex (ABC) technique
(protocol), 304–307
discussion, 306–307
material, 304–305
method, 305–306
recipes, 307
troubleshooting, 306
Immunometrics, 487
Immunofluorescence
for imaging, 327, 336, 337, 340, 344
for surgery, 443, 447–448
In vitro analysis in germline mouse models of cancer, 30–31
detection of, 204
shRNA targeting of, 198
Immunohistochemistry
for surgery, 443, 447–448
Ink4a
International Cancer Genome Consortium (ICGC), 482, 489, 490t–491t, 493, 495
International Knockout Mouse Consortium (IKMC), 44
International Mouse Phenotype Consortium (IMPC), 44
Intervention trials, 430
Intestinal epithelial stem cell medium
Involucrin promoter, 146
InVEx (software), 494
Insertions and deletions (INDELs), 70
Inflammation, tumor, 381–382
Insertional mutagenesis, See Transposon-based insertional mutagenesis
Insertions and deletions (INDELs), 70
Institutional safety office, 499
Insurance model of metastasis, 348–349
Insulinoma model of metastasis, 348–349
Insulin model of metastasis, 348–349
Insulin model of metastasis, 348–349
Insulin model of metastasis, 348–349
Intestinal epithelial stem cell medium
Involucrin promoter, 146
InVEx (software), 494
Involucrin promoter, 146
IRS (internal ribosome entry sequence), 98, 319
International Cancer Genome Consortium (ICGC), 482, 489, 490t–491t, 493, 495
International Knockout Mouse Consortium (IKMC), 44
International Mouse Phenotype Consortium (IMPC), 44
Intervention trials, 430
Intestinal epithelial stem cell medium
(recipe), 420
Intranasal instillation of virus into mice, 120
Intraportal injection, 432
Intravenous injection, 432
Inverted repeats, 173
InvVEx (software), 494
Invoculin promoter, 146
IRS (internal ribosome entry sequence), 98, 319
iRFP, 313–314
"is_a" relationships, 469, 470, 471
Isoluvare for imaging, 337, 340, 344
for surgery, 443, 447–448
NOD mice, 254–255, 255t
NSG mice with human PDX tumors
for identification and directed therapy toward TICS, 259–261, 259t
for immunotherapy, 258–259
for testing drug efficacy, 256–257
hematological tumors, 257, 257t
solid tumors, 256–257, 257t
overview, 253–254
patient-derived xenograft (PDX), 254, 256–263, 257t, 262f
PDX programs, 261–263
at Jackson Laboratory, 261–262
remaining challenges and future directions
in, 263–264
subcapsular transplantation of tissue in the kidney (protocol), 268–271
discussion, 271
materials, 268–269
method, 269–270
troubleshooting, 270
Immunometric assay (protocol), 382
Immunohistochemistry
assessment of immune cells in mouse tumor tissue (protocol), 390–395
discussion, 395
materials, 390–391, 391t
method, 391–393
recipe, 395
sample images, 394f
troubleshooting, 394
in epithelial-mesenchymal transition (EMT) tumor, 283f
markers used to assess therapy response, 433t
staining of mouse tissues using the avidin-biotin complex (ABC) technique
(protocol), 304–307
discussion, 306–307
material, 304–305
method, 305–306
recipes, 307
troubleshooting, 306
Immunometrics, 487
Immunofluorescence
for imaging, 327, 336, 337, 340, 344
for surgery, 443, 447–448
In vitro analysis in germline mouse models of cancer, 30–31
detection of, 204
shRNA targeting of, 198
Immunohistochemistry
for surgery, 443, 447–448
Ink4a
Index

J
J Jackson Laboratory
foundings of, 2
patient-derived xenograft (PDX) program, 261–262
Jaenisch, Rudolf, 2, 3, 3f, 18

K
K Keratinocyte 14 (K14) promoter, 35, 37
Keratin promoters, 133
Kidney, subcapsular transplantation of tissue in
(protocol), 268–271
discussion, 271
materials, 268–269
method, 269–270
troubleshooting, 270
KISS1, 349
Kit, knock-in models of cancer, 90, 92t
Knock-in mouse models, 89–101
conditional models, 93–95
maintenance of wild-type gene expression, 95
regulating recombination/activation, 95–97
removable transcriptional terminal stop elements, 93–95, 94f
elements, 92t
facilitation of detection, 97–98
future of, 98–101
design and selection of site-specific nucleases, 100
generation of mice, 100–101
genome editors, 101
improved technologies for generation of mice, 98
site-specific engineered nuclease technology, 98–100, 99f
knock-in technology described, 90
modeling familial cancer using germline
K1 mice, 90
regulating recombination/activation, 95–97
inducible recombinase expression, 95
overexpression of oncogene, 97
reversible gene regulation, 97
sequential and/or spatial regulation of multiple alleles, 96–97
tissue-specific expression, 96
viral delivery of recombinase, 96
of somatic human cancer, 90–95
stochastic models, 93
types of knock-in alleles, 91f
Köhler illumination, 289
KPC model of pancreatic ductal adenocarcinoma, 446–447
Kras
in carcinogen-induced tumors models, 137
knock-in models of cancer, 92t, 93, 95–96
in lung cancers, 12, 65, 131
non-small-cell lung cancer (NSCLC) and, 149
in urethra-induced tumors, 137
models in pre-/co-/postclinical trials, 458
RCAS-Kras, 160
Sleeping Beauty mutagenesis and, 179
tetracycline-regulated systems and, 128, 135

L
L. Lacy, Elizabeth, 2
LAP (liver-activated protein) promoter, in
tetracycline-regulated systems, 132
Laser safety, 500
Latent mouse model, 93
Lathrop, Abbie, 1
LDD (Lhermitte–Duclos disease), 29
Leder, Philip, 4, 4f, 5
Lens tumors, 94
Lentivirus
gene delivery, 111–112
in vivo delivery of lentivirus-Cre or adenovirus-Cre into mice using intranasal instillation (protocol), 119–121
materials, 119–120
method, 120
recipe, 121
troubleshooting, 120–121
producing and concentrating lentivirus-Cre for mouse infections (protocol), 116–118
materials, 116–117
method, 117–118

Leukemia. See also
Lymphoma.

Leukemia inhibitory factor (LIF), 198
Ley, Timothy, 6
Lgr5+/Kras adenoma cells, 350
Lhermitte–Duclos disease (LDD), 29
Li-Fraumeni syndrome, 90
Ligand-induced recombination, 145
Lineage tracing in metastatic models, 350–351
Little, Clarence Cook, 1–2, 2f
Liver
isolation of HSCs from fetal liver, 210–211
reconstitution of mice with modified liver stem cells (protocol), 215–218
discussion, 217
materials, 215–216
method, 216–217
generation of genetically defined liver carcinomas, 217
purification, culture, and retroviral infection of hepatoblasts, 216–217
tumor retransplantation, 217
recipes, 218
Liver-activated protein (LAP) promoter, in
tetracycline-regulated systems, 132
Liver cancer
chimeric models to study, 205
gene expression screens in transplant models, 207
induction of liver tumors in mice with
N-ethyl-N-nitrosourea or
N-nitrosodimethylamine (protocol), 61–62
tetracycline-regulated model system, 130f, 132
Loeb, Leo, 1
Logic, description, 470
Loss-of-function screening in hematopoietic malignancies (protocol), 224–226
Loss of heterozygosity (LOH), 44
loss sites, 94, 106–108, 106f, 107t, 113
Lox-STOP-lox (LSL) cassette, 94–97, 94f
LRP (lysine-rich protein), 316
LTR, in RCAS-TVA system, 155–156, 156f
Luciferase, 330–331, 343
Luciferin/D-luciferin, 310–312, 311f, 344, 364, 367
properties of, 345
routes of injection, 345–346
D-luciferin substrate solution (7.5 mg/mL) (recipe), 346
Lung cancer
circulating cancer markers for, 480
clinical trials, 11–12
combinational therapy, 9
edemal growth factor receptor (EGFR) mutations in, 137–138, 452
18F-FDG-PET/CT imaging of drug-induced metabolic changes in genetically engineered mouse lung cancer models (protocol), 333–338
discussion, 337
materials, 335–336
method, 336–337
generation of drug-resistant tumors using intermittent dosing of tyrosine kinase inhibitors in mice (protocol), 450–453
discussion, 452, 452f
materials, 450–451
method, 451
recipe, 452–453
troubleshooting, 451
induction of lung tumors in mice with
urethane (protocol), 63–65, 64f
in vivo delivery of lentivirus-Cre or adenovirus-Cre into mice using intranasal instillation (protocol), 119–121
materials, 119–120
method, 120
recipe, 121
troubleshooting, 120–121
Kras mutations, 12, 131, 137, 149
tetacycline-regulated model system, 130f, 131–132
Lung tissue dissociation for metastatic studies (protocol), 358–363
Lymphocytes
cryopreservation of, 485–486
standardization and standard operating procedures for immune assays, 486–487
Lymphoma. See also
Lymphoma.
Burkitt’s, 22, 204
Era-myc lymphoma model, 3–4, 22, 148, 190, 191, 193, 204, 206
Lysine-rich protein (LRP), 316

M
Magnetic resonance imaging (MRI)
angiography, 330
arterial spin labeling, 330
desktop instruments, 329
diffusion tensor imaging, 329–330
diffusion-weighted imaging (DWI), 329, 341

© 2014 by Cold Spring Harbor Laboratory Press
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammary fat pad</td>
<td>247–251</td>
</tr>
<tr>
<td>cleared MFP transplantation</td>
<td>249–250</td>
</tr>
<tr>
<td>dissociation of mouse mammary tissue</td>
<td>248–249, 249f</td>
</tr>
<tr>
<td>method</td>
<td>248–250, 249f, 250f</td>
</tr>
<tr>
<td>recipes</td>
<td>250–251</td>
</tr>
<tr>
<td>Mammary gland cancer</td>
<td>See Breast cancer</td>
</tr>
</tbody>
</table>

Marking primary mouse mammary cells for metastasis studies, murine stem cell-based retrovirus production for (protocol), 364–369

troubleshooting, 368

samples, 359–360

MART-1 melanoma antigen | 258 |

"Matched pairs" of tumors | 203 |

Material transfer agreement (MTA) | 12, 463 |

Material safety data sheets (MSDSs) | 499 |

Matrix metalloproteinase 3 (Mmp3) | 230 |

Matrix metalloproteinase 9 (Mmp9) | 230 |

Mcl1 and Mdr1b (drug transporters) | 436 |

MDM2 (mouse double minute 2) | 120 |

MDMX, 148 |

Mdr1a and Mdr1b (drug transporters) | 436 |

Medical Pathological Waste (MPW) | 501 |

Medulloblastoma, modeling using Sleeping Beauty transposon-based insertional mutagenesis, 179 |

Melanomas, BRAF and, 458 |

Metabolic profiling, for biomarker discovery, 482 |

MicroPET | 306 |

Microplate reader, analysis of retrovirus-transduced cells with, 367 |

Mie1 and Mrie1 (drug transporters) | 436 |

MIG vectors | 364, 366, 368 |

MIT vectors | 352, 364, 366, 368 |

MMTV-Cre transgene | 42 |

MMTV-H-Ras | 20 |

MMTV-LTR | 20–21 |

MMTV-Myc | 4, 20–21 |

MMTV-Nestin | 306 |

MMTV-PyMT breast cancer model, 349, 351 |

MMTV-Ras | 20–21 |

MMTV-Wnt1 | 20–21 |

MMHCC | 351–352 |

MIT vectors, 352, 364, 366, 368 |

MiR30-based shRNA, 194 |

MiR30 shRNA, 189f |

Mitochondrial genome, polymorphisms in, 71 |

MiR30 shRNA, 189f, 190–191, 193 |

Mitochondrial genome, polymorphisms in, 71 |

MIT vectors, 352, 364, 366, 368 |

MMP3 (matrix metalloproteinase 3), 230 |

MMP9 (matrix metalloproteinase 9), 230 |

MMPV | See Mursion tumor virus |

MMTV-Cre transgene | 42 |

MMTV-H-Ras | 20 |

MNTV-LTR | 20–21 |

MNTV-Myc | 4, 20–21 |

MNTV-Nestin | 349, 351 |

MNTV-PyMT tumor model, 349, 351 |

MNTV-Ras | 20–21 |

MNTV-Wnt1 | 20 |

M-MuLV | 2 |

M-MuLV (Moloney leukemia virus), 2 |

M-MuLV breast cancer model, 349, 351 |

MDM2 (mouse double minute 2) | 120 |

Mouse mammary tumor virus (MMTV) | 20 |

Mouse mammary cells for production for marking primary mouse mammary cells for metastasis studies (protocol), 364–369 |

troubleshooting, 368

materials, 364–365 |

method, 365–368 |

recipes, 368–369 |

Marty-1 melanoma antigen, 258 |

"Matched pairs" of tumors, 203 |

Material transfer agreement (MTA) | 12, 463 |

Material safety data sheets (MSDSs) | 499 |

Matrix metalloproteinase 3 (Mmp3) | 230 |

Matrix metalloproteinase 9 (Mmp9) | 230 |

Maximum tolerated dose (MTD) | 431–432 |

MCIntoch, Barbara, 173 |

MDM2 (mouse double minute 2) | 120 |

Mcl1 and Mdr1b (drug transporters) | 436 |

Medical Pathological Waste (MPW) | 501 |

Medulloblastoma, modeling using Sleeping Beauty transposon-based insertional mutagenesis, 179 |

Melanomas, BRAF and, 458 |

Metabolic profiling, for biomarker discovery, 482 |

MicroPET | 306 |

Microplate reader, analysis of retrovirus-transduced cells with, 367 |

microRNAs (miRNAs) | 188 |

biogenesis and introduction of exogenous RNAi triggers, 189 |

Mintz, Beatrice, 2, 3, 3f, 18 |

MiR30-based shRNA, 194 |

miRNAs. See microRNAs (miRNAs) |

Mm30 shRNA, 189f, 190–191, 193 |

Mild Hypocellularity Cancer Consortium |

MMTV-Cre transgene | 42 |

MMTV-H-Ras | 20 |

MMTV-LTR | 20–21 |

MMTV-Myc | 4, 20–21 |

MMTV-Nestin breast cancer model, 349, 351 |

MMTV-PyMT breast cancer model, 349, 351 |

MMTV-Ras | 20–21 |

MMTV-Wnt1 | 20 |

MMP3 (matrix metalloproteinase 3), 230 |

MMP9 (matrix metalloproteinase 9), 230 |

MMPV | See Mursion tumor virus |

MNTV-Cre transgene | 42 |

MNTV-H-Ras | 20 |

MNTV-LTR | 20–21 |

MNTV-Myc | 4, 20–21 |

MNTV-Nestin breast cancer model, 349, 351 |

MNTV-PyMT breast cancer model, 349, 351 |

MNTV-Ras | 20–21 |

MNTV-Wnt1 | 20 |

M-MuLV (Moloney leukemia virus), 2 |

Molecular profiling, blood and plasma collection for, 483 |

Moloney leukemia virus (M-MuLV), 2 |

Monte Carlo method, for identification of transposon insertion sites, 177–178 |

© 2014 by Cold Spring Harbor Laboratory Press
Index

Mouse double minute 2 homolog (MDM2), 148
Mouse Hospital
housing and husbandry, 462
infrastructure for, 463f
pharmacy for, 462–463, 463b
Mouse mammary tumor virus (MMTV), 20–21
long terminal repeat in tetracycline-regulated model system, 129, 131t
MMTV-Cre transgene, 42
MMTV-Myc mice, 4
MMTV-Neu breast cancer model, 349, 351
MMTV-PyMT mammary tumor model, 349, 351
Mouse Models of Human Cancer Consortium (MMHCC), 287, 462, 467, 468, 487, 488
Mouse Pathology Ontology (MPATH), 470
Mouse strains. See Inbred mouse strains
MPATH (Mouse Pathology Ontology), 470
MPW (Medical Pathological Waste), 501
MRL. See Magnetic resonance imaging
MR spectroscopy (MRS), 341–342
MSCV promoter

Multicolor flow cytometric analysis of immune cell subsets in tumor-bearing mice (protocol), 384–389
discussion, 387–388
materials, 384–385
method, 385–387, 387t, 388f
FACS analysis, 386–387, 387t, 388t
preparation of single-cell suspension from solid tissue or tumor, 386
preparation of single-cell suspension from spleen, 385–386
troubleshooting, 387

Mutagenesis. See Transposon-based insertional mutagenesis
Mx1-Cre mice, 111
Myc
cooperation between oncogenic signals, 136
eye studies on, 3–4
Eμ-myc lymphoma model, 3–4, 148, 204, 206
in hepatocellular tumors, 132
MMTV-Myc mice, 4
Myc-induced lymphomagenesis, 204
oncogene addiction and cancer recurrence, 134–136
MycER12, 147
MycER4AM, 147
Myeloid-derived suppressor cell-mediated T-cell suspension assay (protocol), 396–400
discussion, 400
materials, 396–397
method, 397–400
isolation of Gr-1+ cells, 398–399
plate setup, 399
preparation of single-cell suspensions from spleens, 397–398
preparation of single-cell suspensions from tumors, 398
T-cell suspension assay, 399–400, 399t
troubleshooting, 400

N
National Cancer Institute (NCI)
Carcinogenesis Bioassay Program, 53
Mouse Models of Human Cancer Consortium (MMHCC), 287, 462, 467, 468, 487, 488
National Institute of Environmental Health and Human Services
National Toxicology Program (NTP), 53
Natural killer (NK) cells, 254, 255, 258
Necropsy
limited mouse necropsy (protocol), 293–296
discussion, 295
materials, 293–294
method, 294–295
reference guides, 285
Nes gene promoter, 159–160
N-ethyl-N-nitrosourea (ENU)
induction of liver tumors in mice with N-ethyl-N-nitrosourea or N-nitrosodiamethylnitrosamine (protocol), 61–62
use to identify lung cancer susceptibility loci, 56
Neurofibromatosis, 30

NSC mice, 253–264
development of, 254, 255t, 256
with human PDX tumors as models for identification and directed therapy toward TICS, 259–261, 259f
for immunotherapy, 258–259
for testing drug efficacy, 256–257
hematological tumors, 257, 257t
solid tumors, 256–257, 257t
NTP (National Toxicology Program), 53
Nucleic acids, assays of tumor-derived, 482
Nucleic acids-based profiling, for biomarker discovery, 481b
Nude mice, 254, 255t

O
Occupational Safety and Health Administration (OSHA), 499
Oncogene
ER-fused, 146–147
overexpression of, 97
Oncogene addiction cancer recurrence, 134–136
pathology, 284
Oncogenic signals, cooperation between, 136
Oncomouse, 3–4
Oncomouse patent, 5–6
Oncogene addiction cancer recurrence, 136
Oncogene addiction cancer recurrence, 134–136
pathology, 284
Oncogenic signals, cooperation between, 136
Oncomouse, 3–4
Oncomouse patent, 5–6
Optogeny of disease, 274f
Optical imaging, 330–331
Optical window, 314f
Optimal cutting temperature (OCT) medium, 390

P
p27
analysis in germline mouse models of cancer, 31
colon cancer and, 67
combining chemical carcinogenesis and genetically engineered models of cancer, 55–56
lung cancer and, 65
p53
analysis in germline mouse models of cancer, 28–29
carcinogen bioassay and, 57
combining chemical carcinogenesis and genetically engineered models of cancer, 55–56
conditional knockout mouse models, 40
coopertion between oncogenic signals, 136
DMBA/TPA skin cancer protocol and, 57
toward TICS, 259–261, 259f

Phosphatidylinositol 3-kinase (PI3K)
toward TICS, 259–261, 259f

Pt ligands
inhibitors, 258–259

Radiation therapy
toward TICS, 259–261, 259f

RNAi-mediated knockdown, 231

© 2014 by Cold Spring Harbor Laboratory Press
Pancreas
culturing primary mouse pancreatic ductal cells (protocol), 404–407
materials, 404–405
method, 405–406
culturing and passaging cells, 406
single-cell suspension preparation, 405
recipes, 406–407
troubleshooting, 406
immunohistochemical images of tissue, 394
pancreatic epithelial cells
creating primary cell lines from lineage-labeled mouse-models (protocol), 408–411
discussion, 410–411
materials, 408–409
method, 409–410
recipes, 411
troubleshooting, 410
isolating epithelial and epithelial-to-mesenchymal transition populations from primary tumors by FACS (protocol), 374–376
discussion, 376
materials, 374–375
method, 375–376
tissue-specific oncogene expression in, 22–23
Pancreatic cancer
CA19-9 marker for, 480
combinational therapy, 9
microRNAs (miRNAs) as blood based cancer markers, 482
modeling using Sleeping Beauty transposon-based insertional mutagenesis, 179
tetracycline-regulated model system, 131t, 132
ultrasound imaging for evaluating tumors, 446
Pancreatic ductal adenocarcinoma (PDA), 132.
See also Pancreatic cancer
acquisition of mouse tumor biopsies through
dominant laparotomy (protocol), 440–449
knock-in models of, 96
KPC model of, 446–447
orthotopic injection of pancreatic cancer cells (protocol), 377–379
discussion, 379
materials, 377–378
method, 378–379
resistance to therapy, 437
SMAD4 gene and, 43
ultrasound imaging of, 443
Pancreatic ductal epithelial cell medium (recipie), 411
Pandolfi, Pier Paolo, 6, 10, 11
PANTHER (software tool), 494
Paraformaldehyde fixative, 123, 298
p19ARF, 30–31, 149
Patents, 5–6
Pathologist, choosing, 286–287
Pathology, 273–307
defined/described, 274–275
general disease processes, 275t
handling experimental data, 287–290
data organization and integration, 287–288
image presentation, 289
understanding nomenclature, 288–289
whole-slide imaging (WSI), 289–290, 290t
online training programs, 295
pathobiology of cancer in genetically engineered mice, 274–285
critical background information, 276
general disease processes, 275t
gross specimen logic tree, 276f
gross tissue examination, 279
malignancy, 281, 281f
metastasis, 281f, 282–283
microscopy
microscope slide examination, algorithm for, 277f
misinterpretations of pathology, 278f
tissue examination, 279
natural history of cancer, 279–282
neoplastic variation, heterogeneity, and reproducibility, 283–285
ontology of disease, 274f
pathology of cancer, 275–278
precancer identification, 279–282, 281f
postage stamp, 289
protocols
limited mouse necropsy, 293–296
discussion, 295
materials, 293–294
method, 294–295
recipes, 302–303
troubleshooting, 301–302
manual immunohistochemistry staining of mouse tissues using the avidin-biotin complex (ABC) technique, 304–307
discussion, 306–307
materials, 304–305
method, 306
recipes, 307
troubleshooting, 306
mouse tissue fixation, 297–299
data for common fixatives, 298t
discussion, 298–299
fixative choice, 298–299, 298t
materials, 297
method, 297–298
timing and duration of fixation, 299
sharing scientific data, 467–478
calELMIR example, 467, 468, 470–477
Experiment, 471, 472f, 473, 473f
pathology, 473
slide report, 473, 476f
Specimen, 473, 474f, 475f
spreadsheet report, 473, 477f
Study, 471, 471f, 472f
controlled vocabulary, 469–470
structured reports, 468–469
technical preparation for study of genetically engineered mouse, 285–287, 286f
fixation, 285–286
handling tissues after fixation, 286
interpretation and choosing a pathologist, 286–287
necropsy, 285
standards, 285
study hierarchy, 286f
Patient-derived xenograft (PDX), 254, 256–263, 257t, 262f
graftment and expansion of, 262f
GEMMs as distinct from, 457
NSG mice with human PDX tumors as models for identification and directed therapy toward TICS, 259–261, 259t
for immunotherapy, 258–259
for testing drug efficacy, 256–257
hematological tumors, 257, 257t
solid tumors, 256–257, 257t
PDX programs, 261–263
avatar mice, 262–263
at Jackson Laboratory, 261–262
subcapsular transplantation of tissue in the kidney (protocol), 268–271
discussion, 271
materials, 268–269
method, 269–270
troubleshooting, 270
P1 bacteriophage, 106
PBS (10×, pH 7.4) (recipe), 362, 373
PBS with Ca2+ and Mg2+ (D-PBS) (recipe), 362
PCR amplification and sequencing of transposon insertion sites, 176–177, 177f
PDC full medium (recipe), 407
PDX. See Patient-derived xenograft
Pgcf1 promoter, 96
PEG promoter, 318
Perfusion MRI, 330, 341
p53ER7AM, 147–149, 148f
PET. See Positron emission tomography
Pgk promoter, 94f, 95
Pharmacodynamics and pharmacokinetic measurements
considerations in trial design, 459
in therapeutic trials/studies, 433–434
Pharmacy, for Mouse Hospital, 462–463, 463b
Phenotypic end point study, 429
Phoenix packaging cells, 216
Phosphatase and tensin homolog. See Pten
Phosphate-buffered saline (PBS) (recipe), 213, 216
Phenotype, for Mouse Hospital, 462–463, 463b
Pol II promoters, 190, 191, 193
Pol (PML-RAR) knock-in models of cancer, 92t
Pim1-3, 206
PIN (prostate intraepithelial neoplasia) lesions, 231, 233f, 235
PITM1-3, 206
PLZF-RARA mice, 6–7
PML-RARα, 6, 436
Poisson regression insertion model (PRIM), for identification of transposon insertion sites, 178
Pol II promoters, 190, 191, 193
Polybrene, 211, 221
Polybrene (recipe), 213, 218, 223
Polycyclic aromatic hydrocarbons (PAHs), 52, 54
Polyomavirus middle T (PyMT) oncogene, 230
Ponasterone A, 149
Positron emission tomography
PiggyBac
PB_SMART transposon constructs, 181
transposon-based insertional mutagenesis, 180–181
Pik3, 9, 41
PIK3CA, knock-in models of cancer, 92t
Pimpl-3, 206
PIN (prostate intraepithelial neoplasia) lesions, 231, 233f, 235
PLZF-RARA mice, 6–7
PML-RARα, 6, 436
Index

Positron emission tomography (PET) (Continued)
18F-FDG-PET/CT imaging of drug-induced metabolic changes in genetically engineered mouse lung cancer models (protocol), 335–338
discussion, 337
materials, 335–336
method, 336–337
overview, 327–328, 328f
strengths and limitations of, 326f
Postclinical trials, 456–460, 456b
Port, Percival, 52
p48 promoter, 132
Precancer identification, 279–282, 281f
Preclinical drug testing
Precancer identification, 279–282, 281f
Preclinical drug testing/trials, 7–9, 456–460, 456b
Prevention trials, 429–430
Preclinical drug testing
Preclinical drug testing/trials, 7–9, 456–460, 456b
Prevention trials, 429–430
PRIM (Poisson regression insertion model), for identification of transposon insertion sites, 178
Primary growth medium (recipe), 251
Probashi-Cre (Pb-Cre), 44
Proliferation rate, immunohistochemical markers of, 433t
Promoters. See also specific promoters
hypermethylation of CpG islands in, 482
pancreas specific, 22–23
in RCAS-TVA system, 156
tetracycline-dependent, 125
tissue-specific, 22
in tissue-specific Cre-expressing mouse lines, 96, 110f, 110t
Pronuclear microinjection of DNA, 18, 21
Prostate
dissociated prostate regeneration under the renal capsule (protocol), 243–246
dissociation of mouse prostate tissues, 244
engraftment of prostate cell recombinants into subrenal capsules, 245
materials, 243–244
method, 244–245
preparation of prostate cell recombinants in collagen plugs, 245
recipes, 246
troubleshooting, 245
graft appearance, 232f–233f
preparation of ureteral sinus mesenchymal cells for prostate tissue recombination models (protocol), 240–242
materials, 240–241
method, 241
recipe, 242
prostate intraepithelial neoplasia (PIN) lesions, 231, 233f, 235
Prostate cancer
androgen deprivation therapy (ADT), 11
castration-resistant (CRPC), 11, 482
combinational therapy, 9
drug resistance, 11
microRNAs (miRNAs) as blood based cancer markers, 482
PSA (prostate specific antigen) as marker, 480
SMAD4 conditional knockout models, 44
TRAMP metastatic prostate cancer model, 251
Prostate intraepithelial neoplasia (PIN) lesions, 231, 233f, 235
Prostate specific antigen (PSA), 44, 480
Proteomics for biomarker discovery, 481b
PSA (prostate specific antigen), 44, 480
Pseudopathology, 287
Pten, 24, 137, 458
analysis in germline mouse models of cancer, 29–30
conditional knockout mouse models, 41–42
models in pre-/co-/postclinical trials, 458
RNAi-mediated knockdown, 231
SMAD4 gene and, 43–44
RCOS virus, 156
Recipes
Avertin (20 mg/mL), 121
B-cell freezing medium, 213
B-cell medium, 213, 222
BFS growth medium, 242, 246
BSA coating solution, 250
collagenase solution, 251
collagen solution, 406
complete medium for metastatic studies, 362, 373
digestion buffer for mammary glands, 415
digestion solution for tissue dissociation, 362
eosin Y solutions, 302
erlotinib, 452–453
formaldehyde (3%), 395
G solution, 407
hematoxylin solution (Mayer’s), 303, 307
hepatocyte growth factor, 218
HEPES-buffered saline (HBS) precipitation buffer (2×), 368
high-glucose complete medium, 369
IF buffer, 415
intestinal epithelial stem cell medium, 420
D-luciferin substrate solution (7.5 mg/mL), 346
neutralized collagen, 246
pancreatic ductal epithelial cell medium, 411
PBS (10× pH 7.4), 362, 373
PBS with Ca2+/Mg2+ (D-PBS), 362
PDC full medium, 407
phosphate-buffered saline (PBS), 213, 223, 415, 425
polybrene, 213, 218, 223
primary growth medium, 251
RBC lysis buffer for tissue dissociation, 362
red blood cell lysis solution, 223
soaking buffer for mouse intestine, 420
solution A for organotypic culture, 425
solution B for organotypic culture, 425
solution C for organotypic culture, 425
solution D for organotypic culture, 426
solution E for organotypic culture, 426
stem cell supplement (5×), 213
tryptsin-EDTA, 407, 411
tryptsin-EDTA in PBS, 415
WEHI conditioned medium, 214
X-gal rinse buffer for Cre expression, 124
X-gal solution, 124
Recombinase-mediated cassette exchange (RMCE), rapid site-specific transgene insertion using, 193–195, 195f
Recombinases. See Site-specific recombinases; specific recombinases
Recombination-activating genes (Rag1null and Rag2null), 253–256
Red blood cell lysis solution (recipe), 223
Red blood cells, removal from cell suspensions, 385, 397
Renal capsule, dissociated prostate regeneration under (protocol), 243–246
dissociation of mouse prostate tissues, 244
genome of prostate cell recombinants into subrenal capsules, 245
materials, 243–244
method, 244–245
preparation of prostate cell recombinants in collagen plugs, 245
recipes, 246
troubleshooting, 245
Solid tumors

Soaking buffer for mouse intestine (recipe), 420

Sodium iodide symporter (NIS), 316

Solid tumors

identification of tumor-initiating cells

(TICs), 259f, 260

isolation of Gr-1 cells, 398–399

modeling using Sleeping Beauty transposon-based insertional mutagenesis, 178–179

NSG mice with human PDX tumors as models for testing drug efficacy, 246–257, 257f

preparation of single-cell suspension from, 386, 398

Solution A for organotypic culture (recipe), 425

Solution B for organotypic culture (recipe), 425

Solution C for organotypic culture (recipe), 425

Solution D for organotypic culture (recipe), 426

Solution E for organotypic culture (recipe), 426

Solvents, safe handling of, 500, 503

SomaticSniper algorithm, 492

Somatostatin receptor, 316–317

Sox tyrosin inhibitor, 406

SPECT (single-photon emission CT) imaging, 326, 327–328

Spectral unmixing, 313

Spectrin-B2, 482

Spleen

immunohistochemical images, 394f

isolation of Gr-1 cells, 398–399

preparation of single-cell suspensions from, 385–386, 397–398

Splice acceptor, 94f, 95

Splinkerette PCR, 176, 177, 177f

SPP1 (secreted phosphoprotein 1), 44

Sprouty2, 137

Squamous cell carcinoma, metastatic, 350

Standard operating procedures (SOPs), for clinical trial infrastructure, 462, 464, 465

STAR algorithm, 492

Stem cell-based retrovirus production for marking primary mouse mammary cells for metastasis studies (protocol), 364–369

cell supplement (5\(\times\)) (recipe), 213

Steward, Timothy, 4, 5

Stochastic knock-in mouse models, 93

Stop elements, removal, 93–95, 94f

Strains.

See also

Stem cells.

see also

Tamoxifen

dissociation and culture of single cells, 419

isolement of crypts, 418

recipes, 420

ES cell rederivation, generation of multiallelic nGEMMs via, 197–198

history of use, 4–5

murine stem cell-based retrovirus production for marking primary mouse mammary cells for metastasis studies (protocol), 364–369

reconstitution of mice with modified liver stem cells (protocol), 215–218

discussion, 217

materials, 215–216

method, 216–217

generation of genetically defined liver carcinomas, 217

purification, culture, and retroviral infection of hepatoblasts, 216–217

tumor retransplantation, 217

recipes, 218

Stem cell supplement (5\(\times\)) (recipe), 213

Stewart, Timothy, 4, 5

Surgical trials, 467–478

Survival study, 429

SV40 (simian virus 40), 3, 18–19, 458

SVDEs (scientifically validated data elements), 468–469, 478

SVMerge (software tool), 492

SV-MGH mice, 3

Syngeneic tumor graft model, 83f, 84

SVMerge (software tool), 492

SV40 (simian virus 40), 3, 18–19, 458

SVDEs (scientifically validated data elements), 468–469, 478

SVMerge (software tool), 492

SV-MGH mice, 3

Syngeneic tumor graft model, 83f, 84

Synonymy, 469, 470

Synoptic reports, 468

Systematized Nomenclature of Human and Veterinary Medicine-Clinical Terms (SNOMED CT), 470

T

TALENs. See Transcription activator-like effector nucleases

Tamoxifen

estrogen receptor (ER) regulatable system and, 111, 143–153

Sleeping Beauty transposon-based insertional mutagenesis and, 181–183, 182f

tamoxifen administration to mice (protocol), 151–152

T1 and T2 values, diffusion tensor imaging and, 329, 341

T-antigens, SV40, 18–19

Target validation, GEMM use in, 8

T-cell suspension assay (protocol), 396–400

discussion, 400

materials, 396–397

method, 397–400

isolation of Gr-1 cells, 398–399

plate setup, 399f

preparation of single-cell suspensions from spleens, 397–399

preparation of single-cell suspensions from tumors, 398

T-cell suspension assay, 399–400, 399t

troubleshooting, 400

Tet operator (TetO), 111, 125, 126f, 127–128, 128f, 368

Tetracycline-inducible shRNA against p53, 193

Tetracycline-regulated systems, 125–142

future applications, 138

modeling cancer in vivo, 133–138, 134f

carcinogen-induced models, 137

cooperation between oncogenic signals, 136

metastasis, 136–137

oncogene addiction and cancer recurrence, 134–136

preclinical testing, 137–138

oncogenes for metastasis studies, 352

overview of, 125–127, 126f

RCAS-TVA system and, 128

Sleeping Beauty transposon-based insertional mutagenesis and, 182f, 183

technical applications, 127–129, 128f

"Tet-Off" system, 125, 127, 132

"Tet-On" system, 125, 127, 129, 132

tissue-specific model systems, 129–133

central nervous system, 131t, 133

colon, 131t, 132

hematopoietic, 130t, 133

liver, 130t, 132

lung, 130t, 131–132

mammary gland, 129, 131t

pancreas, 131t, 132

skin, 130t, 132–133

table of models, 130t–131t

thyroid, 131t, 132

Tetracycline transactivator (TTA), 125, 126f, 127

in metastasis studies, 352, 364, 368

Tetraspanin CD151, 349

Tet-responsive element (TRE), 97

Test by transplantation, 280

Tetrahesperone (TetO), 111, 125, 126f, 127–128, 128f, 368

Tgf-β

metastasis and, 349

signaling, 43–44

Therapeutic trials/studies

goals and uses of studies in mice, 427–428
Tissue recombination models for study of epithelial cancer, 227–251

mammary fat pad as an orthotopic site for studying breast cancer, 229–230

mimicking the native tumor microenvironment, 230–231, 232f–233f

overview, 227–228

protocols, 240–251
cleared mammary fat pad transplantation assay for mammary epithelial organogenesis, 247–251

cleared MFP transplantation, 249–250, 250f
dissociation of mouse mammary tissue, 248–249, 249f

materials, 247–248

method, 248–250, 249f, 250f

recipes, 250–251
dissociated prostate regeneration under the renal capsule, 243–246
dissociation of mouse prostate tissues, 244
graftment of prostate cell recombinants into subrenal capsules, 245

materials, 243–244

method, 244–245

preparation of prostate cell recombinants in collagen plugs, 245

recipes, 245

troubleshooting, 245

preparation of urogenital sinus mesenchymal cells for prostate tissue recombination models, 240–242

materials, 240–241

method, 241

recipes, 241

gene strategy to convert benign human epithelia to cancer, 235–236

strengths and weaknesses of, 231–235
tumor xenografts grown in orthotopic versus subcutaneous sites, 228–229

Tissue reconstitution, 203–226

chimeric models to study liver cancer, 205

eX vivo manipulation of hematopoietic stem cells (HSCs), 204

gene screens in transplant models, 206–207

loss-of-function screening in hematopoietic malignancies (protocol), 224–226

discussion, 226

materials, 224

method, 224–226, 225f

assessing tumor engraftment efficiency, 225

deconvoluting shRNA representation, 225–226

reconstituting mice with modified liver stem cells, 225

troubleshooting, 225

organ systems amenable to reconstitution, 204

overview, 203–204

reconstitution of mice with modified HSCs (protocol), 219–221

discussion, 212, 213–216

materials, 210–212, 210f

infection, 211

isolation of HSCs from bone marrow, 211

isolation of HSCs from fetal liver, 210–211

recipes, 213–214

troubleshooting, 212

reconstitution of mice with modified liver stem cells (protocol), 215–218

discussion, 217

materials, 215–216

method, 216–217
generation of genetically defined liver carcinomas, 217

purification, culture, and retroviral infection of hepatoblasts, 216–217

tumor retransplantation, 217

recipes, 218

RNAi use in vivo, 205

synergetic transplants with modified chimeric hematopoietic tumors (protocol), 219–223
discussion, 222, 222f

materials, 219–220

method, 220–221

recipes, 222–223

troubleshooting, 221–222

using transplant models to study cancer therapy, 206

Tif1/Nkx2-1, 480

TKIs. See Tyrosine kinase inhibitors (TKIs)

Tol2 transposon-based insertional mutagenesis, 180

T2/Onc2 and T2/Onc3 transposon, 176, 179

TopHat algorithm, 492

Topoisomerase I, 206

Topoisomerase II, 206

Toxic compounds, 504

TPA (12-O-tetradecanoylphorbol-13-acetate), 54, 55

TRAMP metastatic prostate cancer model, 351, 482

Transcription activator-like effector nucleases (TALENs), 98, 99f, 100–101, 199

Transcriptional terminal stop elements, removability, 93–95, 94f

Transformation related protein 53 (TP53), 23–26

transposon-based insertional mutagenesis, 180

T2/Onc2 and T2/Onc3 transposon, 176, 179

TopHat algorithm, 492

Topoisomerase I, 206

Topoisomerase II, 206

Toxic compounds, 504

TPA (12-O-tetradecanoylphorbol-13-acetate), 54, 55

TRAMP metastatic prostate cancer model, 351, 482

Transcription activator-like effector nucleases (TALENs), 98, 99f, 100–101, 199

Transcriptional terminal stop elements, removability, 93–95, 94f

Transformation related protein 53 (TP53), 147, 148f, 179, 181. See also p53

Sleeping Beauty mutagenesis and, 179, 181

TP53 knock-in models of cancer, 90, 92t

Transgenic mouse models, early, 17–24

brain tumors induced by SV40 large T-antigen, 18–20

of breast cancer, 20–21

of Burkitt’s lymphoma, 22

elastase-promoter-driven models, 23

Eμ-Myc model, 22

mouse mammary tumor virus (MMTV), 20–21

overview, 17–18

RIP-Tag, 23

time line of model development, 19f

with tissue-specific oncogene expression, 21–23

with viral promoter/enhancer-driven oncogenes, 21–22

Translational therapeuticization, 427–453. See also Therapeutic trials/studies

acquisition of mouse tumor biopsies through abdominal laparotomy (protocol), 440–449

discussion, 440–449

evaluation of tumor location and vascularity, 447

KPC model of pancreatic ductal adenocarcinoma (case study), 446–447

mouse anesthesia, 447–448

outcome, 448–449, 448f

materials, 440–442, 442f

method, 442–446

advance preparation, 442–443, 443f

animal preparation, 443–444

postoperative care, 445–446

surgery, 444–445, 444f

troubleshooting, 446

example trials in GEMMs, 437t

features of translational mouse model, 428–429
Translational therapeutics (Continued)
generation of drug-resistant tumors using intermittent dosing of tyrosine kinase inhibitors in mice (protocol), 450–453
discussion, 452, 452f
materials, 450–451
method, 451
recipe, 452–453
troubleshooting, 451
goals and uses of studies in mice, 427–428
interpretation of trial outcomes, 430–431
practical considerations in study design, 431–432
dose and schedule, 431–432
enrollment criteria, 431
length of treatment, 432
routes of drug delivery, 432
tumor monitoring, 432
preclinical infrastructure, 434–435
reasons for performing clinical trials in GEMMs, 436–437
resistance to cancer therapies, 436
testing efficacy of new therapeutic agents, 436
tumor microenvironment and response to drugs, 436–437
techniques used in studies, 433–434
immunohistochemical markers used to assess therapy response, 433
pharmacodynamics and pharmacokinetic measurements, 433–434
tumor biopsies, 434
therapeutic trial structures, 429–430
intervention trials, 430
prevention trials, 429–430
Transplantation
orthotopic, 228–229
subcapsular transplantation of tissue in the kidney (protocol), 268–271
discussion, 271
materials, 268–269
method, 269–270
troubleshooting, 270
tissue recombination models for study of epithelial cancer, 227–251
cleared mammary fat pad transplantation assay for mammary epithelial organogenesis (protocol), 247–251
cleared MFP transplantation, 249–250, 250f
dissociation of mouse mammary tissue, 248–249, 249f
materials, 247–248
method, 248–250, 249f, 250f
recipes, 250–251
dissociated prostate recombinants under the renal capsule (protocol)
egraftment of prostate cell recombination into subrenal capsules, 245
materials, 243–244
method, 244–245
preparation of prostate cell recombinants in collagen plugs, 245
recipes, 246
troubleshooting, 245
dissociated prostate regeneration under the renal capsule (protocol), 243–246
dissociation of mouse prostate tissues, 244
mammary fat pad as an orthotopic site for studying breast cancer, 229–230
mimicking the native tumor microenvironment, 230–231, 232f–233f
overview, 227–228
preparation of urogenital sinus mesenchymal cells for prostate tissue recombination models (protocol), 240–242
materials, 240–241
method, 241
recipe, 242
protocols, 240–251
strategies to convert benign human epithelia to cancer, 235–236
strengths and weaknesses of models, 231–235
tumor xenografts grown in orthotopic versus subcutaneous sites, 228–229
Transposase, 173–174
Transposon-based insertional mutagenesis, 173–184
future of, 182–183
Minos, 179–180
overview, 173–174
PCR amplification and sequencing of transposon insertion sites, 176–177, 177f
PiggyBac, 180–181
Sleeping Beauty
applications of, 176
hallmarks of Sleeping Beauty-driven tumors, 181
to identify genetic determinants of drug resistance in cancer, 183
induction of mutagenesis, 178
modeling solid tumors using, 178–179
overview, 174–176
refinements of system, 181–183, 182f
transposon and transposase alleles, 175t
Tol2, 180
Transposons
categorization of, 173
copy number, 173, 176
mobilization of, 173
PCR amplification and sequencing of transposon insertion sites, 176–177, 177f
TRE (tetrascopic elemental response) element, 97
TRE promoter, 194
Trials. See also Therapeutic trials/studies
Co-Clincial Trial Project, 10–12, 10f, 11f
designing preclinical, coclinical, and postclinical trials, 459–460
clinically relevant end points, 460
imaging, 459
pharmacokinetics/pharmacodynamics, 459
relevance to ongoing clinical trials, 459
statistical power, 459
tissue collection, pathology, and bioinformatics, 460
GEMMs use in, 455–460
designing preclinical, coclinical, and postclinical trials, 459–460
goals for clinical efforts in GEMMs, 457b
optimizing model use for preclinical, coclinical, and postclinical trials, 456–457, 456b
selecting appropriate model for analyses, 457–459
infrastructure needs for, 461–466
coclinical evaluation, 465–466
data integration, 465–466
education and training, 466
experimental design and treatment protocols, 464–465, 464b
Good Laboratory Practice, 464
housing and husbandry, 462
mouse hospital, 463b, 463f
mouse pharmacy, 462–463, 463b
overview, 462, 464
standard operating procedures (SOPs), 462, 465
preclinical drug testing, 7–9
structured reporting in pathology for coclinical trials, 467–478
caELMIR example, 467, 468, 470–477
Experiment, 471, 472f, 473, 473f
pathology, 473
slide report, 473, 476f
Specimen, 473, 474f, 475f
spreadsheet report, 473, 477f
Study, 471, 471f, 472f
controlled vocabulary, 469–470
structured reports, 468–469
Trip53. See Transformation related protein 53
Trypan blue viability, for counting viable cells, 360, 373
Trypsin, for digestion of urogenital sinus, 241
Trypsin-EDTA (recipe), 407, 411
Trypsin-EDTA in PBS (recipe), 415
TiTA (tetracycline transactivator), 125, 126f, 127
in metastasis studies, 352, 364, 368
Tumor-initiating cells (TICS), 259–261, 259t
Tumor monitoring, in therapeutic trials/studies, 432
Tumor suppressors
analyses in germline mouse models of cancer, 27–31
Apc, 30
benefits of, 28
Brca1/2, 31
Ink4a, 30–31
lessons learned from, 28t
Nj1/2, 30
p27Kip1, 31
p53, 28–29
Pten, 29–30
RB, 29
ER-fused tumor suppressors, 147–149, 148f
hypermethylation of CpG islands in promoters, 482
Tumor virus A (TV A) receptor, 155–160
2A peptide, 98
Tyrosine kinase inhibitors (TKIs)
EGFR and, 432, 436, 452
generation of drug-resistant tumors using intermittent dosing in mice (protocol), 450–453
discussion, 452, 452f
materials, 450–451
method, 451
recipe, 452–453
troubleshooting, 451
Tyrosine (Tyr) promoter, in tetracycline-regulated model system, 133

U
Ubiquitin-specific protease 6 (USP6), 494
UCSC LiftOver tool, 494
Ultrasonicators, 500–501
Ultrasound imaging, 326t, 331–332
- color Doppler, 447
 for evaluating pancreatic tumors, 446
- nonlinear contrast ultrasound, 447
 of pancreatic ductal adenocarcinoma, 443f
- power Doppler, 447
U6 promoter, 189
Urethane
 induction of lung tumors in mice with urethane (protocol), 63–65, 64f
 metabolic activation of, 53
 use to identify lung cancer susceptibility loci, 56
Urogenital sinus mesenchyme (UGSM), 230, 232f
 fibroblast growth factor 10 (FGF10) overexpression, 235
 preparation of urogenital sinus mesenchymal cells for prostate tissue recombinant models (protocol), 240–242
 materials, 240–241
 method, 241
 recipe, 242
Urokinase, 349

V
- VarScan 2 algorithm, 492
- Vascular endothelial cadherin promoter (VECad), 146
- Vascularity, evaluation of tumor, 447
VECad-Cre-ERT², 146
- Vectastain ABC Reagent, 393
- VEGFR, 9
- Via-Probe fluorescence, 387
Viral delivery of Cre in vivo delivery of lenti-Cre or adeno-Cre into mice using intranasal instillation (protocol), 119–121
 in knock-in mouse models, 96
 overview, 111–112
 producing and concentrating lenti-Cre for mouse infections (protocol), 116–118
 materials, 116–117
 method, 117–118
 materials, 119–120
 method, 120
 recipe, 121
 troubleshooting, 120–121
 Vocabulary, controlled, 469–470
 v-Src, 3
 VSV-G-pseudotyping, 221
W
- Wagner, Erwin, 21
- WAP-Cre, 35, 37, 40, 42
- Waste, disposal of, 501, 502
- WEHI conditioned medium (recipe), 214
- Weinberg, Robert, 5
Whey acidic protein (WAP) promoter, 21
 in tetracycline-regulated model system, 129
 WAP-Cre, 35–36, 40, 42
- Whole-slide imaging (WSI), 289–290, 290t
- Wilms' 1 (WT1) tumor antigen, 258
- WT1 gene, enhancer of, 145
 Wong, Kwok Kin, 11

X
- X chromosome, variation across mouse strains, 71
- Xenografts, 9
- X-gal rinse buffer for Cre expression (recipe), 124
- X-gal solution (recipe), 124
- X-gal staining of whole-mount mouse tissues (protocol), 122–124
 materials, 122–123
 method, 123
 recipes, 124
 troubleshooting, 123

Y
- Y chromosome, polymorphisms in, 71

Z
- Zeb1, 376
- Zinc-finger nucleases (ZFNs), 98, 99f, 100–101