Index

A
AAA + chaperones, 21–22
AAA + proteases, 20–21, 167–168
ABCA4 mutations, 300–301
Aggregation
adaptation of proteostasis network to ameliorate disease, 316–329
adapting proteostasis to ameliorate diseases, 307–333
aggregate clearance by asymmetric damage inheritance, 22–23
in α1-antitrypsin deficiency, 182–184
Alzheimer’s disease Aβ aggregates, 76–78
biological regulation of, 7–9
chemical regulation of, 9–10
chemical strategies to ameliorate disease, 329–333
as concentration-dependent process, 105
disaggregation, small heat shock proteins and, 22
disease and, 2–4
energy landscape, 104, 312
generic view of
biological regulation of aggregation, 7–9
chemical regulation of aggregation, 9–10
kinetics of aggregation, 4–6
protein solubility, key role of, 4, 5
thermodynamics of aggregation, 6–7
Huntington’s disease, inclusion bodies in, 215–224
Parkinson’s disease
α-synuclein, 238
parkin, 240–241
reversing by AAA + chaperones, 21–22
Aging
autophagy, 74–75
diseases of misfolding, 76
evolutionary tradeoffs, 78
heat shock response, 72–73
hypoxia response, 73
mitochondrial quality control, 173–174
neurodegenerative disease, 76–78
pathways that influence, 67–69
dietary restriction, 67, 68, 71
electron transport chain (ETC), 68
insulin-IGF-1-like signaling pathway (IIS), 67–69, 71
proteasomal degradation, 75–76
protein degradation, 74
protein folding, 71–72
protein trafficking, 74
proteostasis collapse, 67–79
proteostasis importance in, 69–70
role in Huntington’s disease, 213–214
translation rate and, 70–71
ubiquitin-proteasomal system (UPS), 75–76
unfolded protein response (UPR), 73
ALIS, 38
α1-antichymotrypsin mutation, 190
α1-antitrypsin deficiency, 181–192
activating proteolytic degradation by lysosome, 329
carcinogenesis, 181–192
cellular response pathways and ATZ accumulation in ER, 188–189
determinants of tissue-specific damage, 184–185
genetic and environmental modifiers, 185
hepatic fibrosis, 181–192
mitochondrial dysfunction in liver disease, 184
other serinopathies compared, 189–192
overview, 181–182
proteasomal and autophagic pathways as modifiers of tissue damage, 185–188
protein aggregation role in tissue damage, 182–184
therapeutic strategies, 189
variations in clinical disease among homozygotes, 185
α-synuclein
described, 237
misfolding and aggregation, 238
posttranslational modifications, 238–239
protein sequence, schematic of, 242
variants, 237–238
ALS. See Amyotrophic lateral sclerosis (ALS)
Alzheimer’s disease, 195–206
Aβ aggregates, detoxification of, 76–78
Aβ generation by regulated proteolysis of precursor protein, 197–199
genetics of, 199
genotype-to-phenotype relationships in familial AD, 199–201
model in C. elegans, 76–78
mouse models, genetically engineered, 78, 201–203
overview, 195–196
protein chemical nature of diagnostic brain lesions, 196–197
retinal involvement, 303

© 2011 by Cold Spring Harbor Laboratory Press
Alzheimer’s disease (Continued)
synaptic form and function perturbation by prefibrillar forms of Aβ, 203–204 therapeutic opportunities from mechanistic study of Aβ, 204–206
Amyloid β-proteins (Aβ), 196–206
prion protein (PrP), 260, 266
fused in sarcoma/translocated in liposarcoma (FUS/TLS), 246–253 overview, 236–237
RNA quality control and, 249 SOD1 in familial ALS, 246–248 in sporadic ALS, 248–249 TDP-43, 249–250
Antithrombin mutations, 191
Apoptosis, ER stress-induced, 151–152
APP (β-amyloid precursor protein), 197–200, 202–204
ATF6, 148–150
ATP-dependent proteolysis in mitochondrial matrix, 165–167
Bacteria. See Prokaryotes
Bestrophin 1, 301
β-amyloid precursor protein (APP), 197–200, 202–204
Bip, 123–124, 148–149
Bovine spongiform encephalopathy (BSE), 263–264
Bunina bodies, in amyotrophic lateral sclerosis (ALS), 236
C1 inhibitor mutations, 191
CAG expansion, in Huntington’s disease, 76, 212–215
Chaperone-mediated autophagy (CMA), 50–52
Clearance mechanisms autophagy, 49–55 chaperone-mediated (CMA), 52 chemical modulation, 55 described, 49–50 macroautophagy, 51–52 microautophagy, 52 pathophysiology of quality control through, 53–55
pathway characteristics, 50–52
physiological functions of, 52–53
integration of, 47–62
intracellular, 48–49
ubiquitin/proteasome system (UPS), 55–61
26S proteasome, 59
chemical modulation, 61
components, 56
decoding ubiquitination at the proteasome, 58–59
described, 55–56
pathophysiology of quality control, 60
ubiquitination language, 57–58
ubiquitin conjugation, 56–57
CLIPS (chaperones linked to protein synthesis), 35
ClpP protease, 166–167
Co-chaperones, 123–124, 319–320
COPD (chronic obstructive pulmonary disease), in
α1-antitrypsin deficiency, 184–185
Creutzfeldt–Jakob disease (CJD), 261, 263
familial (fCJD), 261, 263
iatrogenic (iCJD), 263
sporadic (sCJD), 261
variant (vCJD), 263
CWD (chronic wasting disease), 263–264
Cystatin C, 236
Cystic fibrosis, 281–293
pathological triad, 281, 282
proteostasis network, 324–326
CFTR biology and, 285–287
emergent properties as guide for rescue of misfolding disease, 293
as framework for disease management, 282–285
management of vCFTR functions by, 290
model systems, 289–291
therapeutics and, 287–291
as systems disease, 281–282
therapeutics
new targets affecting restoration of tissue function, 292–293
proteostasis network and, 287–291
trafficking, 284–285
Cystic Fibrosis Foundation Therapeutics modulator library, 287
Cystic fibrosis transmembrane conductance regulator (CFTR), 281–282, 284–293, 325–326
Cytosolic stress, 112

D
DAF-16, 77
DALIS, 38
degP, 24–25
Degradation
aging and, 74, 75–76
altering chaperone-cochaperone interactions to enhance, 319–320
chaperones and, 35–36
endoplasmic reticulum and (see ER-associated degradation) pathways of misfolded protein, 36–37
retrotranslocation and, 132
Deubiquitinating enzymes (DUBs), 59
Diabetes, 78, 326–327
Dietary restriction pathway, 67, 68, 71
Disaggregation, small heat shock proteins and, 22
Disulfide bond formation, 124–125
DJ-1 gene, 246
DnaK system, 15, 18–20
Dsb proteins, 25–26
DUBs (deubiquitinating enzymes), 59

E
E3 ligases, 37, 57, 126
EDEM proteins, 131–132, 133
Electron transport chain (ETC) pathway, 68
ELOVL4 mutations, 300
Endoplasmic reticulum
α1-antitrypsin mutant protein accumulation in, 188–189
calcium and mitochondrial permeability transition, 155
cell survival and death, role in, 147–156
homeostasis, 133–136
calcium balance, 135–136
redox, 134–135
mitochondria interactions, 152–153
posttranslational modifications, 123–125
disulfide bond formation, 124–125
glycosylation, 123
protein folding and quality control in, 121–137
protein folding by chaperones and co-chaperones, 123–124
specialized compartments within, 136
therapeutics and, 136–137
translation of ER-targeted proteins, 121, 123
unfolded protein response (UPR), 148–151
up-regulation of proteostasis network by calcium increase, 328–329
Endoplasmic reticulum secretary compartment, proteostasis challenges of, 321–322
Energy landscape, of protein folding and aggregation, 104, 310, 312
Environmental stress response, 35
ER-associated degradation (ERAD), 125–133
motif names, table of, 130–131
pathway of misfolded protein degradation, 37
pathways, 133
proteins, table of, 128–129
Index

ER-associated degradation (Continued)
 recognition and targeting, 125, 127, 131–132
retrotranslocation and degradation, 132–133
ERdj proteins, 123–124
ER stress, 147–156
 death response, 151–152
unfolded protein response (UPR), 73
Exotic ungulate encephalopathy, 263
Eye
 protein misfolding and retinal degeneration, 297–304
 structure and function, 297–298
Fabry disease, 329
Familial encephalopathy with neuroserpin inclusion bodies (FENIB), 191
Fatal familial insomnia (FFI), 261, 263
Fibulin-3, 301
FoldEx, 285
Folding. See Protein folding
FOXO signaling, 316–318
FtsH protease, 21
Fungal prions, 260, 271
Fused in sarcoma/translocated in liposarcoma (FUS/TLS), 250–253
Gain-of-function disorders
α1-antitrypsin deficiency, 181–192, 329
leucine-rich repeat kinase-2 (LRRK2) mutations, 243–244
serinopathies, 189–192
Gaucher’s disease, 329–330
Gene therapy, for retinal degenerations, 304
Genetic variation, natural, 96–97
Gerstmann–Staussler–Scheinker (GSS) syndrome, 261
GroE system, 15–16, 18–19, 109–111
Guanylbenz, 327
Heat shock factor 1 (HSF1), 72, 76–77, 88–90, 94, 96, 113–114, 313, 314
Heat shock proteins
disaggregation and, 22
Hsp40 family, 123–124
Hsp60, 165
HSP70 family, 107–109
Hsp78, 165
Hsp90 system, 110, 111–112, 320–321
transcriptional regulation of, 113, 114
Heat shock response
 activating to ameliorate degeneration of postmitotic tissue, 316, 318
aging and, 72–73
cytosolic/nuclear compartment, 313–316
HSF axis, 112–114
Hsp90 inhibitors to induce, 320–321
proteasome inhibitors and, 327–328
Heparin cofactor II mutations, 190
Hepatic fibrosis, in α1-antitrypsin deficiency, 181–192
HIF1, 73
Homeostasis. See also Proteostasis
 endoplasmic reticulum, 133–136
 protein integrating strategies in prokaryotes, 13–26
 overview of, 3
 protein solubility, key role of, 4, 5
HSF-1. See Heat shock factor 1
Hsp40 family, 123–124
Hsp60, 165
Hsp70 family, 107–109
Hsp78, 165
Hsp90 system, 110, 111–112, 320–321
HtrA2 protease, 168
Huntington, George, 211
Huntington’s disease, 211–227
 aging, role of, 213–214
 correlations to protein accumulation, 215
 evidence of a proteopathy, 214–215
 genetic determinants of symptom onset and disease progression, 212–213
 of symptom profile and neuropathy, 213
 genotype–phenotype correlations, clinical overview of, 212–214
 history, 211
 HTT aggregation, 215
 inclusion body formation, 215
 as mismatch of protein production and clearance, 215–217
 as regulated mechanism to cope with misfolded proteins, 221–224
 significance to neurodegeneration, 219–221
 integrated view of misfolding and neurodegeneration in, 224–227
 misfolding leading to neurodegeneration, 225–227
 network for protein homeostasis, 224–225
 protein folding and molecular chaperones, 217–219
 proteostasis and, 214–224
Huntingtin (Htt) protein. See Huntington’s disease
Insulin growth factor-1 signaling, 316–319
Index

Insulin-IGF-1-like signaling pathway (IIS) pathway, 67–69, 71
IPOD, 38–39
IRE1, 148–150

J
JUNQ, 38–39

K
Kinetics of protein aggregation, 4–6
Kinetic stabilizers, 330–333
Kuru, 263

L
Leucine-rich repeat kinase-2 (LRRK2) mutations, 243–244
Levinthal paradox, 104
Lewy bodies, Parkinson's disease, 236–239, 241, 246
Life cycle, protein, 70
Lon protease, 20–21, 165–166
Lou Gehrig's disease. See Amyotrophic lateral sclerosis (ALS)
LRRK2 (leucine-rich repeat kinase-2) mutations, 243–244
Lung injury, in α1-antitrypsin deficiency, 184–185
Lysosomal enzymes, pharmacologic chaperones to prevent misfolding and degradation of, 329–330
Lysosomal storage diseases, 322–324, 329
Lysosomes, 49–55, 329. See also Autophagy

M
Macroautophagy, 51–52, 74–75
Mad cow disease, 263
Malattia Leventinese, 301
MAM (mitochondrial-associated membranes), 152–155
Manganese superoxide dismutase, 165
Megasin, 191–192
Metabolic syndrome, 78, 326
Metastability of human proteome, 7
Mice, transgenic
Alzheimer's disease models, 201–203
prions, 264–265
Microautophagy, 52
Misfolding of proteins
AAA+ protease removal, 20–21
adaptation of proteostasis network to ameliorate disease, 316–329
adapting proteostasis to ameliorate diseases, 307–333
in Alzheimer disease, 303
causes and consequences of, 34–35

cellular strategies in protein quality control, 33–42
chemical strategies to ameliorate disease, 329–333
cystic fibrosis transmembrane conductance regulator (CFTR), 281–282, 284–293
generic view of, 1–10
aggregation and disease, 2–4
biological regulation of aggregation, 7–9
chemical regulation of aggregation, 9–10
kinetics of aggregation, 4–6
metastability, 7
protein folding and misfolding, 2
protein solubility in homeostasis, key role of, 4
thermodynamics of aggregation, 6–7
Huntington's disease, 221–227
Parkinson's disease, 303
α-synuclein, 238
parkin, 240–241
in prokaryotes, 13–14
retinal degeneration and, 297–304
serpins, 183
SOD1 (superoxide dismutase-1), 246–248
stress of, 85–98
unified view of, 10
Mitochondria
α1-antitrypsin deficiency and liver disease, 184
endoplasmic reticulum interactions, 152–153
evolution of, 161
function of, 161–162
fusion, proteolytic control of, 170–172
mitophagy, 172
outer membrane proteins, turnover of, 168–170
permeability transition, 155
proteases, 165–168
AAA, 167–168
ClpP, 166–167
HtrA2, 168
Lon, 165–166
Oma1, 168
quality control, 161–174
reticular networks, 162
Mitochondrial-associated membranes (MAMs), 152–155
Mitochondrial quality control, 161–174
in aging and disease, 173–174
chaperones, 162, 163–165
proteases and, 165–168
ATP-dependent proteolysis in mitochondrial matrix, 165–167
proteolytic systems, 166
QC across the inner membrane, 167–168
QC in intermembrane space, 168
proteolytic control of fusion and mitophagy, 170–172
surveillance mechanisms, 161–174

© 2011 by Cold Spring Harbor Laboratory Press
Mitochondrial quality control (Continued)
ubiquitin/proteasome system (UPS), 162, 168–170
unfolded protein response (UPR), mitochondria-specific, 172–173
Mitophagy, 172
Molecular chaperones. See Chaperones
Movement disorders, 235–253
amyotrophic lateral sclerosis (ALS), 246–253 overview, 235–237 Parkinson’s disease, 237–246
MtHsp70, 164–165

N
Neurodegenerative disease
aging, 76–78
Alzheimer’s disease, 195–206
amyotrophic lateral sclerosis (ALS), 246–253
Huntington’s disease, 211–227
Parkinson’s disease, 237–246
Neurofibrillary tangles, in Alzheimer’s disease, 195, 196–197
Neurologic disorders of movement, 235–253
amyotrophic lateral sclerosis (ALS), 246–253 overview, 235–237 Parkinson’s disease, 237–246
Neuroserpin gene mutations, 191
Nucleation-elongation-fragmentation model of fibril formation, 5, 6

O
Oligosaccharyltransferase, 123
Oma1 protease, 168
OPA1 (Optic atrophy 1), 169–172
Outer membrane proteins (OMPs), 24
Oxidative stress, 19–20

P
Parkin, 172
described, 239–240
postmortem evaluation of stability, 242–243
posttranslational modifications, 241–242
proteostasis, 243
stability, impact of disease-linked truncations and mutations on, 240
stress-induced misfolding and aggregation, 240–241
Parkinson’s disease, 237–246
α-synuclein
described, 237
misfolding and aggregation, 238
posttranslational modifications, 238–239
protein sequence, schematic of, 242
variants, 237–238
DJ-1 gene, 246
leucine-rich repeat kinase-2 (LRRK2) mutations, 243–244
mitophagy, 172
overview, 236–237
parkin, 172
described, 239–240
postmortem evaluation of stability, 242–243
posttranslational modifications, 241–242
proteostasis, 243
stability, impact of disease-linked truncations and mutations on, 240
pathway for, 245
PINK1 gene, 244
retinal involvement, 303
UCH-L1, 244–246
PDI family proteins, 124
Periplasmic quality control system, 24–26
PERK, 148–151, 326–327
Pharmacologic chaperones, 329–330
in cystic fibrosis, 287–288
for photoreceptors, 303
Phosphodiesterase 6 (PDE6) mutations, 300
Photoreceptors, unfolded protein response (UPR) in, 299–301
Pick’s disease, 272
PINK1, 172, 244
PME (progressive myoclonus epilepsy), 191
Polyglutamine (polyQ) expansion, in Huntington’s disease, 76, 212–221, 224–227
Polymorphisms, 96–97
Postmitotic tissue degeneration, 316, 318, 330–333
Posttranslational modifications, 123–125
disulfide bond formation, 124–125
glycosylation, 123
Parkinson’s disease
α-synuclein, 238–239
parkin, 241–242
Presenilin 1 and presenilin 2, 199, 201, 202
Prion-like diseases, 272–273
Prions, 259–273
amyloid, 260, 266
bioluminescence imaging, 266, 267
characteristics of mammalian, 272
de novo generation of, 268–271
diseases
in animals, 263–264
in humans, 261, 263
table of, 262
therapeutics for, 273
formation, cell biology of, 268
fungal, 260, 271
prion-like diseases, 272–273
protein isoforms, 259–260
PrP genes, 260–261, 262
replication, 265–266
strains, 271–272
structural features of PrP, 268, 269, 270
transgenic mice, 264–265
Progressive myoclonus epilepsy (PME), 191
Prokaryotes
AAA+ chaperones, reversing aggregation by, 21–22
AAA+ proteases, removal of misfolded proteins by, 20–21
adjusting quality control networks to environmental stress, 16–18
aggregate clearance by asymmetric damage inheritance, 22–23
asymmetric damage inheritance, 22–23
challenges to quality control systems during stress, 18–20
disaggregation, heat shock proteins and, 22
misfolding and quality control systems, 13–14
polar aggregate deposition in E. coli, 23
protein folding
chaperone systems, 15–16
ribosome-bound trigger factor and, 14–15
Protein quality control
causes and consequences of misfolding, 34–35
cellular strategies in, 33–42
chaperones and, 35–36
compartments in eukaryotic cells, 39
model for misfolded protein toxicity in amyloidogenic disease, 41
pathways of misfolded protein degradation, 36–37
protein sequestration, advantages of, 40
role in cellular integrity, 33–34
spatial organization of pathways, 37–40
Protein sequestration, advantages of, 40
Protein trafficking, aging and, 74
Proteome
maintaining functional, 87–91
chaperone networks, 87–88, 89
stress response, role of, 88–90
variation, natural genetic, 96–97
Proteostasis
activating protein degradation to reestablish cytosolic, 319
aging as event of collapse in, 67–79
challenges of the endoplasmic reticulum secretory compartment, 321–322
in extracytoplasmic compartments, 24–26
Huntington’s disease and, 214–224
organismal
chaperone specialization, 95–96
nonautonomous regulation, 93–94
pathways, 90
quality control of mitochondrial, 161–174
regulators in cystic fibrosis, 288
stress-response signaling to maintain in the endoplasmic reticulum, 322
Proteostasis network
adaptation to ameliorate disease, 316–329
components of, 282–283
in cystic fibrosis, 281–293, 324–326
CFTR biology and, 285–287
emergent properties as guide for rescue of misfolding disease, 293
framework for disease management, 282–285
management of vCFTR functions by, 290
model systems, 289–291
therapeutics and, 287–291
diabetes/metabolic syndrome alleviation and, 326
matching misfolded protein load, 92
up-regulation of by ER calcium increase, 328–329
Q
Quality control
autophagy, 53–55
cellular strategies in protein QC, 33–42
Index

Quality control (Continued)
in endoplasmic reticulum, 121–137
of mitochondrial proteostasis, 161–174
overview, 85–87
prokaryotes
adjusting networks to environmental stress, 16–18
challenges during stress conditions, 18–20
in periplasm, 24–26
protein misfolding and, 13–14
RNA and ALS, 249
Ubiquitin/proteasome system (UPS), 60, 162, 168–170
Ubiquitination
conjugation, 56–57
decoding at the proteasome, 58–59

Advantages of protein, 40
of aggregates at polar sites in E. coli, 23

Serpipathies
α1-antichymotrypsin mutation, 190
α1-antitrypsin deficiency, 181–192
antithrombin mutations, 191
C1 inhibitor mutations, 191
heparin cofactor II mutations, 190
neuroserpin gene mutations, 191

Serpins
folding and misfolding, 183
megsin, 191–192

SOD1 (superoxide dismutase-1), in ALS, 41, 246–249
familial, 246–248
sporadic, 248–249

Solubility, role in homeostasis, 4, 5

Stargardt’s disease, 302
Stress, cytosolic, 112

Stress-induced misfolding and aggregation of parkin, 240–241

Stress-induced mitochondrial hyperfusion (SIMH), 163

Stress of misfolding of proteins, 85–98

Stress response. See also Unfolded protein response (UPR)
HSF axis, 112–114
maintaining functional proteome, role in, 88–91

Stress responses
in bacteria
challenges to quality control systems during stress, 18–20
regulation of, 16–18
chaperones and, 72

Tau, 196–197, 199, 205

TDP-43, 249–250

Temperature-responsive RNAs, 17–18

Thermodynamics of protein aggregation, 6–7

TOR, 71

Transcriptional regulation of heat shock proteins, 113, 114

Translational attenuation, 326–327

Translation of ER-targeted proteins, 121, 123

Translation rates, 70–71

Transmissible mink encephalopathy (TME), 263

Transthyretin amyloidogenesis, 330–333

TriC/CCT, 111, 315

Trigger factor, 14–15, 106, 107

26S proteasome, 59

Scrapie, 264

Sequestration

© 2011 by Cold Spring Harbor Laboratory Press
deubiquitinating enzymes (DUBs), 59
language, 57–58
Ubiquitin/proteasome system (UPS), 55–61
aging and, 75–76
chemical modulation, 61
clearance mechanisms, 55–61
components, 56
decoding ubiquitination at the proteasome, 58–59
described, 55–56
mitochondrial quality control and, 162, 168–170
pathophysiology of quality control, 60
pathway of misfolded protein degradation, 36
26S proteasome, 59
ubiquitination language, 57–58
ubiquitin conjugation, 56–57
UCH-L1 gene, 244–246
Unfolded protein response (UPR)
absence in α1-antitrypsin deficiency, 188–189
aging and, 73
branches of, 298–299
described, 298–299
endoplasmic reticulum and, 73, 148–151
mitochondria-specific, 162, 172–173
prolonging, 326–327
in retinal degeneration, 298–301
ABCA4 mutations, 300–301
ELOVL4 mutations, 300
mild response as protective, 301
phosphodiesterase 6 (PDE6) mutations, 300
in photoreceptors, 299–301
in retinal pigment epithelium (RPE), 301
rhodopsin mutations, 299–300
Unfolded protein titration model, 18
UPR. See Unfolded protein response (UPR)
UPS. See Ubiquitin/proteasome system (UPS)

V
Variation, natural genetic, 96–97
Vertex 809/Vertex 770, 288–289, 293
Voltage-dependent anion channel (VDAC), 154, 155

Y
Yeast prions, 260, 271