Index

ABCE1, 22, 62–66
aIF2, 31–33, 44
AKT
 mTORC1 modulation, 126–127
 oncogenic signaling, 262, 267
AMP-dependent protein kinase (AMPK), 128
AMPK. See AMP-dependent protein kinase
Antisense inhibition. See eIF4E
Argonaute, microRNA-induced silencing complex role,
 238–239, 245
A-site, 2, 56–57, 81, 83
ATF4
 transcript in upstream open reading frame-dependent
 translation initiation, 166–167
 unfolded protein response, 166–167
ATF5
 transcript in upstream open reading frame-dependent
 translation initiation, 167
 unfolded protein response, 167
BACCE501, 152
BDNF. See Brain-derived neurotrophic factor
BEZ235, 270
BHQ. See Black hole quencher
Biarsenical fluorescent dyes, fluorescence imaging in single
 cells, 232–233
Bicaudal-C, 200
Bicaudal-D, 195
Bicoid, messenger RNA localization in oocyte pattern
 specification
 anterior–posterior protein gradient formation,
 196–197
 anterior targeting, anchoring, and translational
 regulation, 196
cis-acting elements, 195
 overview, 194–195
BiP, 152
Black hole quencher (BHQ), 81
BNIP3, 128
Brain-derived neurotrophic factor (BDNF), 228, 230, 289
CAF1, 244–245, 248
Calnexin cycle, protein quality control, 152–153
Calreticulin
 calcium binding, 153
 protein quality control, 152–153
 structure, 153
Cancer
 evolutionary considerations, 265–266
genome defects in translational machinery
 initiation factors, 255, 257–258
 ribosome protein mutations, 258–261
 table, 256–257
oncogenic signaling and translation perturbation, 261
therapeutic targeting of translation components
 eIF4E
 antisense oligonucleotides, 334–335
 cap interaction blockers, 333
 eIF4G interaction uncoupling, 334
 helicase inhibitors, 335–336
 phosphorylation inhibitors, 336–337
eIF4F
 phosphatidylinositol 3-kinase inhibitors, 332
 rapamycin analogs, 329
 target of rapamycin kinase inhibitors, 330–332
 tumorigenesis role, 328–329
 overview, 270–271, 328
 prospects, 338
 ternary complex formation inhibitors, 337–338
 translational control
 defects by cancer stage
 progression and metastasis, 268–270
 transformation and tumor initiation, 266–268
 degradation, 253–255
 Cap-independent translation enhancer
 (CITE), 94, 307
Caprin, neuron function, 289–290
Cartilage–hair hypoplasia syndrome (CHH), 261
Caudal, 4EHP in translation repression, 202
CBP20, 333
CBP80, 333
CCR4, 117, 177, 179, 182, 199–201, 241–242,
 244–245, 249
CDK11, 268
Cercosporamide, 337
CHH. See Cartilage–hair hypoplasia syndrome
CHOP
 transcript in upstream open reading frame-dependent
 translation initiation, 167–168
 unfolded protein response, 167
CITE. See Cap-independent translation enhancer
COPII vesicle, 156, 158
CPEB. See Cytoplasmic polyadenylation element-binding
 protein
cTAGE5, 156
Cup, 116, 203

© 2012 by Cold Spring Harbor Laboratory Press
Cytoplasmic polyadenylation element-binding protein (CPEB), 268
cognitive function, 287–288
CPEB4, 266
functional overview, 286
isoforms, 287
translation repression, 287

DAP5, 38
DAPK, 119
DBA. See Diamond-Blackfan anemia
DC. See Dyskeratosis congenita
DCP1, 181, 245
DCP2, 181, 183, 188, 245
Ddx3, 3–4, 35, 46
Ded1, 35, 38, 46
DENR, 64
Dhhl1, 179, 181, 183
Dhx9, 3–4, 46
Diamond-Blackfan anemia (DBA), 259–261
Disulfide bond, formation, 154–156
DOM34, 64–65
Dyskeratosis congenita (DC), X-linked, 258–259, 261
Edc3, 183–184
EDC4, 245, 247
EDD, 241–242, 246
EDEM1, 152–154
eEF1, 20
recycling, 57
eEF1A, 55–57, 137
eEF2, 20, 32, 56–57, 132, 308
diphthamide modification, 57–58
phosphorylation sites, 137
eEF2K, phosphorylation sites, 137
eIF3, 58–59, 65
EF-G, 23, 57, 60–61, 63, 81, 83–85
EF-P, 59–60
EF-Tu, 22–23, 32, 55–56, 60–61, 64, 81–83
Egalitarian, 195
eIF1, 64
binding site on ribosome, 19–20
phosphorylation sites, 137
start codon recognition role, 39–43
eIF1A, 22, 33, 47–48, 64
start codon recognition role, 39–43
eIF2, 31, 33–34, 36, 47, 93
innate immunity
overview, 310
phosphorylation inhibition by viruses
bypassing, 312–313
combinatorial strategies, 312
inhibitors, 312
Met-tRNAi recruitment to small ribosomal subunit
eIF2-GDP recycling, 33–34, 47
overview, 31–32
ternary complex binding promotion factors, 32–33
start codon recognition role, 43
eIF2α, 136, 164, 172, 312–313, 337
eIF2B, 33, 165–166
eIF2Be, phosphorylation sites, 137
eIF2β, 32
eIF2D, 64
eIF2γ, 32, 34, 43
eIF3, 31–33, 38, 63–64, 90, 93, 117, 183, 255, 257–258, 300, 302, 314
messenger RNA recruitment, 37–38
phosphorylation sites, 137
eIF3c, start codon recognition role, 43–44
eIF3e, 36
eIF4B, 36–37, 131–132, 266, 310
tumorigenesis role, 328–330
cancer therapeutic targeting
antisense oligonucleotides, 270, 334–335
cap interaction blockers, 333
eIF4G interaction uncoupling, 334
helicase inhibitors, 335–336
phosphatidylinositol 3-kinase inhibitors, 332
phosphorylation inhibitors, 336–337
rapamycin analogs, 329
target of rapamycin kinase inhibitors, 330–332

© 2012 by Cold Spring Harbor Laboratory Press
Index

EMT. See Epithelial-to-mesenchymal transition
Encephalomyocarditis virus. See Picornavirus internal ribosome entry sites
Endoplasmic reticulum (ER)
calnexin cycle in protein quality control, 152–153
disulfide bond formation, 154–156
glycosylation of proteins, 150–152, 154
inositol-requiring enzyme-1 ribonuclease activity and protein-folding homeostasis, 172
protein exit and secretion regulation, 156–158
protein targeting, 147–150
unfolded protein response. See Unfolded protein response
Endoplasmic reticulum oxidoreductase, 154–155
Epithelial-to-mesenchymal transition (EMT), cancer, 269
EPRS, 117–118
ER. See Endoplasmic reticulum
ERdJ5, 152–153
eRF1, 22, 60–61, 63–66, 314
eRF3, 22, 60–61, 63–65
ERGIC53, 157–158
ES. See Expansion segment
E-site, 57, 81–82
Expansion segment (ES), ribosomal RNA, 14, 16–17
FKBP12, 125, 330–331
FIaH, 232
FLuc, small interfering RNA screening for internal ribosome entry site, 100–101
Fluorescence microscopy. See Single-cell imaging; Single-molecule studies
Fluorescence resonance energy transfer (FRET)
principles, 73–74
single-molecule studies in bacteria
ribosome conformational changes during initiation and elongation, 79–81
transfer RNA conformational changes, 81
dynamics in ribosome, 82–84
ribosome interactions, 84–85
Fluorescent noncanonical amino acid tagging (FUNCAT), global measurement of translation in single cells, 228
FMRI. See Fragile X syndrome
FMRF. See Fragile X syndrome
Foot and mouth disease virus. See Picornavirus internal ribosome entry sites
4E1RCAT, 334
4E-BP
4E-BP, cancer
therapeutic targeting, 333–334
translational control, 262–264
4E-BP1, 95

tORC1 signaling to translational machinery, 129–132
phosphorylation sites, 136
4EGI-1, 334
4EHP, translation repression of Caudal and Hunchback messenger RNAs, 202
Fragile X syndrome, FMRP
function and defects, 282–285
messenger RNA target identification, 283–284
therapeutic targeting, 291
FRET. See Fluorescence resonance energy transfer
FUNCAT. See Fluorescent noncanonical amino acid tagging
GADD34, 167–169, 315
GAIT complex, temporal control of translation, 117–118
GCN2, 337
GCN4, 37, 47, 109, 168
Genome-wide analysis, posttranscriptional gene expression
cis and trans factor identification, 216–219
data analysis, 215–216
dynamic regulation, 212
techniques for study, 209–211
translational activity analysis, 213–215
Gld2, 286
Glucosyl transferase (GT), 152
Glyceraldehyde 3-phosphate dehydrogenase (GPDH), 117–118
Glycosylation endoplasmic reticulum proteins, 150–152
protein secretion effects, 154
GPDH. See Glyceraldehyde 3-phosphate dehydrogenase
GT. See Glucosyl transferase
Gtr1, 127
Gtr2, 127
GW182
domain organization, 240–241
microRNA-induced silencing complex
plant studies, 246–247
protein interactions
deadenylase complex, 242
plasticity, 242–243
poly(A)-binding protein interactions and function, 240, 243–244
redundant and combinatorial interactions, 245
recruitment, 239
proline-rich motif, 242
Hac1p, 165
HBS1, 64–65
HHT. See Homoharringtonine
Hipppuristanol, 335–336
HITS-CLIP, messenger RNA-binding protein target identification, 265, 283–285
Homoharringtonine (HHT), 328
HRI, 337–338
Hrp48, 200
Hu, neuron function, 290
Human rhinovirus. See Picornavirus internal ribosome entry sites
Hunchback, 4EHP in translation repression, 202
ICP6, 308–309
IF1, 18–19, 74–75
IF2, 18–19, 74–75, 79
order of IF2 and transfer RNA arrival in bacteria, 75–76
IF3, 18–19, 63, 75
Initiation, translation
bacteria overview, 2–3
cancer defects in initiation factors, 255, 257–258
eukaryote overview, 3–5, 29–31
initiation factor binding sites on ribosome, 18–20
initiator transfer RNA recruitment, 34
internal ribosome entry site. See Internal ribosome entry site
messenger RNA recruitment to ribosome. See Messenger RNA
prospects for study, 48
ribosomal subunit joining, 47–48
RNA helicases, 45–46
single-molecule studies in bacteria elongation transition, 76–77
order of IF2 and transfer RNA arrival, 75–76
overview, 74–75
ribosome conformational changes, 79–81
start codon recognition
eIF1, 39–43
eIF1A, 39–43
eIF2, 43
eIF3c, 43–44
eIF5, 39–44
messenger RNA sequence context, 44
ribosomal RNA role, 44–45
transfer RNA role, 44–45
transfer RNA recruitment to ribosome. See Transfer RNA

INK128, 270
Inositol-requiring enzyme 1 (IRE1)
functional overview, 165
ribonuclease activity and protein folding homeostasis, 172
translational pausing and colocalization of XBPI messenger RNA with IRE1 effector domain, 170–172
Internal ribosome entry site (IRES)
cap-independent mechanisms of initiation, 94–95
ITAFs, 93–94
messenger RNA in cells bicistronic plasmid test, 96–97
controls for screening from cryptic promoters or splicing, 98–100
evidence, 95–96
mapping, 103
prospects for study, 103–105
RNA polymerase II transcription dependence, 97–98
small interfering RNA screening for FLuc expression, 100–101
transfection and in vitro translation assay, 101–102
overview, 89–90
picornavirus internal ribosome entry sites class III and class IV site mediation, 306–307
classification, 90–93
initiation factor requirements, 93–94
overview, 306
trans-acting factor requirements, 94–95
virus distribution, 307
IRE1. See Inositol-requiring enzyme 1
IRES. See Internal ribosome entry site
ITAFs. See Internal ribosome entry site

K10, 198
L13a, GAIT complex, 117–119
L30e, 14
L41e, 22
La, 94
Long-term depression (LTD), translational regulation in neurons, 282
Long-term potentiation (LTP), translational regulation in neurons, 282
LTD. See Long-term depression
LTP. See Long-term potentiation
Mammalian target of rapamycin. See Target of rapamycin
MAPKs. See Mitogen-activated protein kinases
Mass spectrometry, interactome capture, 113
MCFD2, 157
MCT-1, 64
MDM2, 266
Messenger RNA (mRNA) decoding
decapping promotion and translation initiation repression, 179–182
messenger ribonucleoprotein granules aggregation, 186
assembly in cytoplasm, 183–184
dynamics in cytoplasm, 185–186
mRNA cycle model, 186–187
nontranslating messenger RNA assembly into RNA–protein granules, 182–183
pathways, 177–179
decoding, 22–23
internal ribosome entry site. See Internal ribosome entry site
oogenesis studies in Drosophila. See Oogenesis, Drosophila
recruitment to ribosome
eIF3 role, 37–38
eIF4B role, 36–37
eIF4F role, 34–36
initiation factor knockout studies in yeast, 38–39
overview, 5–6
single-molecule studies in bacteria, 78
start codon recognition
eIF1, 39–43
eIF1A, 39–43
eIF2, 43

INDEX
MFC. See Multifactor complex

MicroRNA

Drosophila ovary messenger RNA protection from degradation, 199
functional overview, 237–238
translation regulation, 5–6

MicroRNA-induced silencing complex (miRISC)

Argonaute role, 238–239, 245
cytoplasmic deadenylase complexes, 244–245
deadenylation interaction with translational repression, 247–248
decapping enzymes, 245

GW182
domain organization, 240–241
plant studies, 246–247
proline-rich motif, 242
protein interactions
deadenylase complex, 242
plasticity, 242–243
poly(A)-binding protein interactions and function, 240, 243–244
redundant and combinatorial interactions, 245
recruitment, 239
mechanism, 238–240, 247
prospects for study, 248–249

miRISC. See MicroRNA-induced silencing complex

Mitogen-activated protein kinases (MAPKs)

interacting kinase inhibitor therapy in cancer, 336–337
mTORC1 modulation, 127–128
signaling to translational machinery
interacting kinases, 132–134
overview, 132–133
prospects for study, 135–137
ribosomal S6 kinase, 134–135

mRNA. See Messenger RNA

MSL2, translational repression of messenger RNA, 114–115
mTORC. See Target of rapamycin

Multifactor complex (MFC), 29, 33, 65

Myc, 267

Nanos

messenger RNA localization in oocyte pattern specification
cis-acting elements, 195
overview, 194–195
targeting to posterior pole plasm, 198
translational control, 200–201
temporal and spatial control of translation, 115–117

Neurogin, 233

NOT, 177, 179, 182, 241–242, 244–246, 249
NSAPI, 117–118

OAS. See Oligoadenylate synthase

Oligoadenylate synthase (OAS), 303

Oligosaccharide transferase (OST), 151–152

Oogenesis, *Drosophila*

advantages as model system, 193
4EHP in translation repression of Caudal and Hunchback messenger RNAs, 202
messenger RNA localization in pattern specification
bicoid anterior–posterior protein gradient formation, 196–197
antior targeting, anchoring, and translational regulation, 196
cis-acting elements, 195
gurken localization, 198
nanos targeting to posterior pole plasm, 198
translational control, 200–201

oskar targeting to posterior pole plasm, 197–198
translational control, 199–200
overview, 194–195
protection from degradation, 199
Vasa as translational activator, 202–203

Oskar, messenger RNA localization in oocyte pattern specification
cis-acting elements, 195
overview, 194–195
targeting to posterior pole plasm, 197–198
translational control, 199–200

OST. See Oligosaccharide transferase

p27, 259
p53, 259–260, 268
Pab1, 179
PABP. See Poly(A)-binding protein
PAN2, 241–242, 244–245
PAN3, 241–242, 244–246
PAR-CLIP, 111–113, 218
PARN, 286
Pat, 245
Pat1, 179, 181–182, 185
Pateamine A, 335

P-body
aggregation, 186
assembly in cytoplasm, 183–184
dynamics in cytoplasm, 185–18
messenger RNA decay
decapping promotion and translation initiation repression, 179–182
pathways, 177–179
mRNA cycle model, 186–187
PCBP-2, 94
PDCD4
phosphorylation sites, 136
translational regulation, 131

PDI. See Protein disulfide isomerase

PDK1, 131
PDX1, 155
Peptidyl transfer center (PTC), 56, 61
PERK, 164, 168–169, 172, 265–265, 310, 312, 337
Index

Peroxiredoxin IV, 156
Phosphatidylinositol 3-kinase (PI3K)
 inhibitors for cancer treatments, 332
 mTORC1 modulation, 126, 135
 oncogenic signaling, 262
PI3K. See Phosphatidylinositol 3-kinase
PIC. See Preinitiation complex
Picornavirus internal ribosome entry sites
 class III and class IV site mediation, 306–307
 classification, 90–93
 initiation factor requirements, 93–94
 overview, 306
 trans-acting factor requirements, 94–95
PIKK, 329, 332
PIM2, 336
PKR. See RNA-dependent protein kinase
Poglut, 154
Poly(A)-binding protein (PABP), 6, 31, 34, 62, 66, 117, 240–244, 286, 302, 309, 314
Polypyrimidine tract-binding protein (PTB), 92, 94, 199
POP2, 244–245
Pop2, 177, 179, 182
PP242, 270
PPIR15A, 169–170
PPIR15B, 169–170
PRAS40, 127
Preinitiation complex (PIC), 29–31, 34–42, 77
PRE. See Programmed ribosomal frameshifting
Programmed ribosomal frameshifting (PRF), 259
Protein disulfide isomerase (PDI), 152, 154–156
PRTE. See Pyrimidine-rich translation element
PSD95, 233
P-site, 2, 18, 39, 44, 56–57, 78, 81, 83–85
PTB. See Polypyrimidine tract-binding protein
PTC. See Peptidyl transfer center
PTEN, 329, 336
Pumilio
 mechanism of action, 288
 neuron function, 288
Puromycin, fluorescent analogs for global measurement of translation, 228–229
Pyrimidine-rich translation element (PRTE), 270
RACK1, 14, 188, 265
Rapamycin, analogs for cancer treatment, 329
Ras, 135
RCK, 179, 245–246
ReAsH, 232
RED1, 128
RF1, 22, 61, 63
RF2, 22, 61, 63
RF3, 60, 63
Rhf1, 150
Rheb, 127–128
Ribonucleoprotein particles (RNPs)
 cis/trans interactions, 113–114
 cross-linking studies, 111–113
 interactome capture, 113
messenger particles as templates for translation control, 110–111
messenger ribonucleoprotein granules. See P-body; Stress granule
prospects for study, 119
RNA affinity chromatography, 113
Ribosomal recycling factor (RRF), 63, 65
Ribosomal RNA (rRNA)
 expansion segments, 14, 16–17
 features in eukaryotes, 14–16
 start codon recognition role, 44–45
Ribosomal S6 kinase (RSK), mitogen-activated protein kinase signaling to translational machinery, 132, 134–135
Ribosome
 binding sites
 initiation factors, 18–20
 transfer RNA, 17–18
cancer and protein mutations, 258–261
messenger RNA recruitment. See Messenger RNA proteins of eukaryotes, 16–17
recycling, 22–23, 62–63–65
single-molecule studies in bacteria
 conformational changes, 79–81
 tracking during elongation, 78
 transfer RNA
 dynamics, 82–84
 interactions, 84–85
 transit, 81–82
structure
 large subunit, 13
 overview, 11, 13
 small subunit, 12
 subunit interactions, 21–22
ternary complex binding to small subunit, 32–33
 transfer RNA recruitment. See Transfer RNA tunnel in eukaryotes, 20–21
RIDD, 172
RISP, 314
RLI1, 64–66
RNA2, 34
RNA3, 35
RNA affinity chromatography, RNA-binding protein identification, 113
RNA-dependent protein kinase (PKR), 264, 312, 337
RNA helicase, translation initiation, 45–46
RNA-induced silencing complex. See MicroRNA-induced silencing complex
RNA polymerase II, transcription dependence for messenger RNA internal ribosome entry site, 97–98
RNA polymerases. See Ribonucleoprotein particles
RPL38, 260
RPS23, 307
RRE. See Ribosomal recycling factor
rRNA. See Ribosomal RNA
RSK. See Ribosomal S6 kinase
Rumi, 154
Rumpelstiltskin, 198

© 2012 by Cold Spring Harbor Laboratory Press
S6 kinase. See also Ribosomal S6 kinase
miTORC1 signaling to translational machinery, 132
substrates, 131–132
target of rapamycin activation, 129, 131
therapeutic targeting, 330–332
Scd6, 181–183
SDS. See Shwachman-Diamond syndrome
Sec12p, 156
Sex-lethal (SXL), 114–115
Shine-Dalgarno sequence, ribosome clearing studies, 78
Shwachman-Diamond syndrome (SDS), 261
Signal recognition particle (SRP), 148–149
Silvestrol, 335–336
Single-cell imaging
global measurement of translation
fluorescent noncanonical amino acid
tagging, 228
overview, 227–228
puromycin fluorescent analogs, 228–229
prospects for translation studies, 233–234
transcript-specific translation imaging
biarsenical fluorescent dyes, 232–233
overview, 229–230
reporter proteins, 230–232
TimeSTAMP, 233
transfer RNA fluorescent derivatives, 229
Single-molecule studies, translation dynamics
elongation studies in bacteria
ribosome tracking, 78
Shine-Dalgarno sequence clearing, 78
eukaryote study prospects, 85–86
fluorescence resonance energy transfer
principles, 73–74
ribosome conformational changes during initiation
and elongation, 79–81
transfer RNA conformational changes, 81
initiation studies in bacteria
elongation transition, 76–77
order of IF2 and transfer RNA arrival, 75–76
overview, 74–75
messenger RNA imaging in gene expression, 225–227
rationale, 72–74
time scales, 71–72
transfer RNA
dynamics in ribosome, 82–84
ribosome interactions and translocation, 84–85
transit through ribosome, 81–82
siRNA. See Small interfering RNA
SKII2, 172
Small interfering RNA (siRNA), screening for internal
ribosome entry sites, 100–101
Stmaug, 116–117
SOX, 303
Squid, 198
SRP. See Signal recognition particle
Stn1, 181
Stress granule
aggregation, 186
assembly in cytoplasm, 183–184
caprin induction, 288–289
dynamics in cytoplasm, 185–186
messenger RNA decay
decapping promotion and translation initiation
repression, 179–182
pathways, 177–179
mRNA cycle model, 186–187
SUO, 246–248
SXL. See Sex-lethal
TANGO1, 156
Target of rapamycin (TOR)
complexes and functions, 124–126
kinase inhibitors for cancer treatment, 330–332
miTORC1 signaling to translational machinery
4E-BPs, 129–132
overview, 126–126
S6 kinase, 132
upstream factors
growth factors and hormones, 126–127
nutrients, oxygen, and energy status, 127–128
prospects for study, 128–129
oncogenic signaling, 262, 264
TAR RNA-binding protein (TRBP), 312
TDI, 61
Termination, translation
overview, 7
prospects for study, 65–66
release factors, 60–62
structural insights, 65
virus regulation, 313–314
Ternary complex (TC), 29, 31–33, 39, 44–45
inhibitors for cancer treatment, 337–338
TIA-1, 185
TIA-R, 185
TimeSTAMP, fluorescence imaging in single cells, 233
TISU element, 5
TOR. See Target of rapamycin
Tpa1, 66
TPL. See Triose phosphate isomerase
TPL. See Tripartite leader
TRAM, 150
Transfer RNA (tRNA)
fluorescent derivatives for global measurement of
translation, 229
Met-tRNA, recruitment to small ribosomal subunit
eIF2-GDP recycling, 33–34
eIF2-independent recruitment, 34
eIF2 role, 31–32
ternary complex binding promotion
factors, 32–33
ribosome binding sites in eukaryotes, 17–18
single-molecule studies in bacteria
conformational changes, 81
dynamics in ribosome, 82–84
order of IF2 and transfer RNA arrival, 75–76
ribosome interactions and translocation, 84–85
transit through ribosome, 81–82
start codon recognition role, 44–45

© 2012 by Cold Spring Harbor Laboratory Press
Index

TRAP, 150
TRBP. See TAR RNA-binding protein
Triose phosphate isomerase (TPI), 96
Tripartite leader (TPL), 308
tRNA. See Transfer RNA
TSC, 305, 308, 329

Unfolded protein response (UPR)
edF2-mediated translational control response
edF5 role, 165–166
phosphorylation relationship to fitness of stressed cells, 169–170
transcripts in upstream open reading frame-dependent translation initiation, 166–168
overview, 164
UNR, 115
Unr, 94
Upf1, 66
UPR. See Unfolded protein response

Vanishing white matter disease (VWM), 166
Vasa, translational activation in Drosophila oogenesis, 202–203
Vascular endothelial growth factor (VEGF), 269
VEGF. See Vascular endothelial growth factor

Virus translational control
balancing translation, replication, and encapsidation, 314
cap-dependent initiation
adenoviruses, 307–308
asfarviruses, 309
eLF4E phosphorylation and DNA replication promotion, 309–310
herpesviruses, 308
megaviruses, 309
mimiviruses, 309
papillomaviruses, 307–308
polyomaviruses, 307–308
poxviruses, 309
RNA viruses, 310
cap-independent translation. See also Picornavirus
internal ribosome entry sites
internal ribosome entry site virus distribution, 307
overview, 305–306
protein-linked 5′ ends, 306
edF2 in innate immunity
overview, 310
phosphorylation inhibition by viruses bypassing, 312–313
combinatorial strategies, 312
inhibitors, 312
host translation impairment
cell translation factors
direct effects, 300–302
indirect effects, 302–303
overview, 304–305
RNA manipulation, 303–305
prospects for study, 314–315
replication strategies, 300
termination and reinitiation regulation, 313–314
VP1, 313
VP2, 313
VWM. See Vanishing white matter disease
Wispy, 200
X-box-binding protein 1 (XBP1)
functional overview, 165
translational pausing and colocalization of messenger RNA with IRE1 effector domain, 170–172
XBP1. See X-box-binding protein 1
XRN1, 172, 187

YB-1, 35
ZBP1. See Zip code binding protein 1
Zip code binding protein 1 (ZBP1), neuron function, 288–289
ZIPK, 119