Index

Page references followed by f denote figures; those followed by t denote tables.

A

Acetonitrile, 19–20, 24
Adaptor protein (AP) complexes, 13
Adipocytes (3T3-L1) in GLUT4 storage vesicle preparation
complete membrane fractionation of 3T3-L1 adipocytes, 86–91
iodixanol gradient centrifugation to separate components of the low-density membrane fraction from 3T3-L1 adipocytes, 92–94
preparation of a total membrane fraction from 3T3-L1 adipocytes (protocol), 79–81
16K fractionation of 3T3-L1 adipocytes to produce a crude GLUT4-containing vesicle fraction (protocol), 82–85
Affinity-based capture of exosomes, 61
Antibodies, in affinity-based capture of exosomes, 61
Arabidopsis thaliana, chloroplast isolation from protoplasts of, 159–163
Axonemes, 139–140
B

Ballabio, Andreas, 65
BCA protein assay, 16
β-hexosaminidase activity, 69
Binding medium for phagosomes (recipe), 57
Bovine brain tissue, collecting, 119
Brain
isolation of microtubules by assembly/dissassembly methods (protocol), 118–122
subcellular fractionation, 49–52, 50f, 51t
synaptosomes as model system for studying synaptic physiology, 45–53
Brain homogenization buffer (recipe), 52
Buffer A for CCVs (recipe), 16, 21
Buffer A-FS (recipe), 16

C

Cadherins, 9
Catalase activity buffer (recipe), 105, 113
Catalase activity measurement, 103, 112, 113
Centrifugation. See also Density gradient centrifugation; specific protocols
medium for, 3
overview, 2–3
rotors for, 2–3
Centrosome, 139
Chicken brain tissue, collecting, 119
Chloramphenicol acetyltransferase, 139–140
Chloroplast homogenization buffer (recipe), 193
Chloroplast isolation from plant protoplasts (protocol), 159–163
discussion, 162
materials, 159–160
method, 160–161
isolating chloroplasts, 161
isolating proteoliposomes, 160–161
recipes, 162–163
Chloroplast lysis buffer (recipe), 193
Chloroplast ribosome dissociation buffer (recipe), 209
Chloroplast ribosomes
cell extract preparation for, 191, 192
density gradient centrifugation, 193
dissociation of ribosomes into large and small subunits, 206–210
Chromatography, isolation of ribosomes by (protocol), 196–199
materials, 196–197
method, 197–198
recipes, 198–199
troubleshooting, 198
Clathrin-coated vesicles (CCVs), isolation from tissue culture cells, 11–25
heterogeneity of CCVs within sample, 13
in-gel digestion and Orbitrap mass spectrometer to analyze the proteome of CCVs (protocol), 18–21
materials, 18–19
method, 19–20
in-gel digestion, 19
mass spectrometry, 20
peptide extraction, 20
recipe, 21
isolating HeLa cell fractions enriched for CCVs (protocol), 14–17
materials, 14–15
method, 15–16
recipes, 16
limitations of method, 12–13
organ-based methods compared, 11–12
proteome analysis of CCVs using in-solution digestion, peptide fractionation, and a Q exactive mass spectrometer (protocol), 22–25
materials, 22–23
method, 23–25
in-solution digestion, 23–24
mass spectrometric analysis, 24–25
peptide fractionation using SDB-RPS, 24
recipes, 25
Colloidal iron dextran (FeDex) (recipe), 75
Concanavalin A. in lectin-magnetic beads for plasma membrane isolation (protocol), 5–9, 6f, 8t
Coomassie Plus protein assay reagent, 8
Core nuclear matrix, 223, 232–233
CS-mannitol buffer (recipe), 162
CS-sucrose buffer (recipe), 162
Cycloheximide, 180
Cysteine-SulfoLink resin, 196
Cytoskeletal (CSK) buffer (recipe), 233

D

de Duve, Christian, 65, 97
Density gradient centrifugation
endosome isolation (protocol), 36–39
materials, 36
method, 37–38
continuous gradient, 37–38
step gradient, 37
recipes, 38
iodixanol gradient centrifugation to separate components of the low-density membrane fraction from 3T3-L1 adipocytes (protocol), 92–94
isolation of macrophage early and late endosomes by latex bead internalization and (protocol), 40–44
discussion, 42, 43f
materials, 40–41
method, 41–42
discontinuous sucrose gradient preparation, 41–42
harvesting cells, 41
homogenizing cells, 41
latex bead internalization, 41
separation of organelles containing latex beads, 42
recipes, 43–44
troubleshooting, 42
lysosome isolation from rat liver (protocol), 67–71
discussion, 70
materials, 67–68
method, 68–70
density-gradient centrifugation, 69
isolation of endolysosomes, 70
preparation of homogenate, 68–69
recipes, 70–71
mitochondria purification by sucrose step density gradient centrifugation (protocol), 155–157
materials, 155
method, 155–156
recipes, 157
troubleshooting, 156
nuclei isolation, 219–222
discussion, 221
materials, 219–220
method, 220–221
recipes, 222
peroxisomes
large-scale purification for preparative applications (protocol), 108–114
small-scale purification for analytical applications (protocol), 100–107, 104f
ribosome and polysome isolation, 188, 192–193, 200–210
rough microsome isolation, 165
separation of kinins and dynes in sucrose gradient centrifugation, 134

© 2015 by Cold Spring Harbor Laboratory Press. All rights reserved.
Index

Diethylaminoethyl (DEAE) cellulose, 129
Diethylaminoethyl (DEAE) Sephadex, 129
Differential centrifugation, 2–3
Discontinuous sucrose gradient preparation, 41–46
Disruption of cells, 1–2. See also specific methods; specific protocols
Dithiobis(succinimidyl propionate), 232
DNA, nuclear matrix and, 225
DNase, 223, 225, 228–232
Dounce homogenizer, 1–2, 151, 152, 170, 176–177, 180–181, 184
DTT buffer (recipe), 105, 113
Dynein, 115, 116, 131. See also Motor proteins
isolation of cytoplasmic dynein, 133–134
separation of kinesin and dynein by sucrose gradient centrifugation, 134

E
Electron microscopy
for nuclear matrix analysis, 225
for rough microsome purity analysis, 167
Endocytosis, 27
Endosomes, isolation of, 70
Endoplasmic reticulum. See Rough microsomes
Endosomes, 27–44
advances in fractionation techniques for, 29
disruption by density gradient centrifugation (protocol), 36–39
materials, 36
method, 37–38
continuous gradient, 37–38
step gradient, 37
recipes, 38
isolation of macrophage endosomes by latex bead internalization and density gradient centrifugation (protocol), 40–44
discussion, 42, 43f
materials, 40–41
method, 41–42
discontinuous sucrose gradient preparation, 41–42
harvesting cells, 41
homogenizing cells, 41
latex bead internalization, 41
separation of organelles containing latex beads, 42
recipes, 43–44
troubleshooting, 42
overview, 27–28
proteome, 28–29
Enzyme buffer for protoplasts (recipe), 162
Escherichia coli, isolation of ribosomes by chromatography (protocol), 196–199
materials, 196–197
method, 197–198
recipes, 198–199
troubleshooting, 198
ExoMir (Bio Scientific), 61
ExoQuick (System Biosciences), 61
Exosomes, 59–63
functions of, 60
future study, 62
properties of, 59–60
purification methods, 60–61
affinity-based capture, 61
precipitation, 61
size-based, 60–61
ultracentrifugation, 60

F
Fbp1p, 104f, 105
FeDex, 72–75
Ficol, 70, 156
Ficol (20%) (recipe), 71
Ficol (25%) (recipe), 71
5'-Nucleotidase activity, 8–9, 8t
Flagellar axonemes, 139–140
Fluorescent microscopy, for observation of microtubule gliding, 139
FMG-1B, 116–117
Fox3p, 104f, 105
Fractionation. See also specific protocols
assessing fractions, 3
in GLUT4 storage vesicle preparation
complete membrane fractionation of 3T3-L1 adipocytes, 86–91
iodixanol gradient centrifugation to separate components of the low-density membrane fraction from 3T3-L1 adipocytes, 92–94
preparation of a total membrane fraction from 3T3-L1 adipocytes (protocol), 79–81
16K fractionation of 3T3-L1 adipocytes to produce a crude GLUT4-containing vesicle fraction (protocol), 82–85
in lysosomal isolation from rat liver (protocol), 68–70
overview, 2–3
in peroxisome preparation, 102, 110
subcellular fractionation of the brain, 49–52, 50f, 51t
French press buffer for prokaryotic polysomes (recipe), 193
French press buffer for prokaryotic 70S ribosomes (recipe), 193
Fraturose-1,6-bisphosphatase (Fbp1p), 104f, 105
G
GlpG, 104f, 105
Glucose transporter isoform 4 (GLUT4), 77–78
Glucose transporter isofrom 4 (GLUT4), 77–78
GLUT4 storage vesicles (GSVs), isolation of, 77–95
complete membrane fractionation of 3T3-L1 adipocytes (protocol), 86–91
materials, 86–87
method, 87–89
immunoblotting, 89
membrane fractionation, 87–89, 88f
recipes, 90–91
troubleshooting, 89–90
iodixanol gradient centrifugation to separate components of the low-density membrane fraction from 3T3-L1 adipocytes (protocol), 92–94
immunoblotting, 93, 94f
materials, 92–93
method, 93, 94f
recipes, 94
troubleshooting, 93–94
preparation of a total membrane fraction from 3T3-L1 adipocytes (protocol), 79–81
materials, 79–80
method, 80–81
concentrating soluble fractions by TCA precipitation, 80–81
preparing total membrane fractions, 80–81
recipe, 81
troubleshooting, 81
16K fractionation of 3T3-L1 adipocytes to produce a crude GLUT4-containing vesicle fraction (protocol), 82–85
materials, 82–83
method, 83–84
concentrating the light membrane fraction by TCA precipitation, 83
preparing 16K fractions, 83
recipes, 85
troubleshooting, 84
Glycerol, 184–185
in isolation of microtubules by assembly/disassembly methods (protocol), 118, 120–122
Glycogen, 172
Golgi isolation (protocol), 141–146
discussion, 144–145
materials, 141–142
method, 142–144
preparation of Golgi, 142–143
yield determination, 143–144
recipes, 145–146
troubleshooting, 144
Gradient buffer A (recipe), 106, 113
Gradient buffer B (recipe), 106, 113
Gradient buffers A–E for Golgi isolation (recipe), 145
Gradient Master, 37–38

H
HeLa cells, clathrin-coated vesicles (CCVs)
membrane fractionation, 83
isolation from advantages of using, 12
limitations of method, 12–13
protocol, 14–17
materials, 14–15
method, 15–16
recipes, 16
HEPES-sorbitol buffer (recipe), 162
HES buffer (recipe), 81, 90, 94
High-salt sucrose cushion buffer for chloroplast ribosomes (recipe), 194
High-salt sucrose cushion buffer for prokaryotic ribosomes (recipe), 194
Homogenization. See also specific protocols
choice of method, 1–2
in lysosomal isolation from rat liver (protocol), 68–70
of mammalian cells (protocol), 32–35
materials, 32–33
method, 33–34
protocol for cells that require hypotonic shock, 34
standard protocol, 33–34
recipes, 35
troubleshooting, 34
for mitochondria isolation, 148
monitoring with phase-contrast microscopy, 133–134, 150
Homogenization buffer, 2
Homogenization buffer for endosome preparation (recipe), 35, 38, 43
Index

Microtubule-associated proteins (MAPs) (Continued)
separation of tubulin and microtubule-associated proteins by ion exchange chromatography (protocol), 127–130
discussion, 129
materials, 127
method, 128–129
recipes, 129–130
troubleshooting, 129
structure, 115
Microtubules, 115–140. See also Microtubule-associated proteins (MAPs)
gliding of, 138, 139–140
isolation by assembly/disassembly methods (protocol), 118–122
discussion, 121
materials, 118–119
method, 119–121
brain tissue collection, 119
isolation using buffer containing glycerol, 120–121
isolation using buffer lacking assembly-promoting components, 119–120
recipes, 121–122
isolation of microtubule-based motor proteins by ATP release from paclitaxel-stabilized microtubules (protocol), 131–135
discussion, 134
materials, 131–132
method, 132–134
isolation of cytoplasmic dynein, 133–134
isolation of kinesin, 132–133
separation of kinesin and dynein by sucrose gradient centrifugation, 134
recipes, 134–135
isolation of microtubules and microtubule-associated proteins using paclitaxel (protocol), 123–126
materials, 123
method, 124–125
observation of microtubule-based motor protein activity (protocol), 136–140
discussion, 139–140
bead movement on microtubule arrays nucleated by isolated centrosomes, 139
gliding of flagellar axonemal microtubules whose plus ends can be identified in the microscope, 139–140
gliding of microtubules with minus ends fluorescently labeled, 139
materials, 136–137
method, 137–138
latex bead movement along microtubules, 137
microtubule gliding, 138
recipe, 140
troubleshooting, 138
polarity of, 131, 139
structure, 115, 131
Miescher, Friedrich, 211
miRNA, in exosomes, 60
Mitochondria isolation from cells and tissues, 147–157
isolation from animal tissue (protocol), 152–154
discussion, 154
materials, 152
method, 152–153
recipe, 154
troubleshooting, 153
isolation from tissue culture cells (protocol), 149–151
discussion, 151
materials, 149
method, 150
recipes, 151
troubleshooting, 150–151
markers for, 148
purification by sucrose step density gradient centrifugation (protocol), 155–157
materials, 155
method, 155–156
recipes, 157
troubleshooting, 156
tips, 147–148
Mitosis, 115
Mono Q, 129
Motor proteins, 115–117
function of, 115
isolation and analysis, 116
isolation of microtubule-based motor proteins by ATP release from paclitaxel-stabilized microtubules (protocol), 131–135
discussion, 134
materials, 131–132
method, 132–134
isolation of cytoplasmic dynein, 133–134
isolation of kinesin, 132–133
separation of kinesin and dynein by sucrose gradient centrifugation, 134
recipes, 134–135
observation of microtubule-based motor protein activity (protocol), 136–140
discussion, 139–140
bead movement on microtubule arrays nucleated by isolated centrosomes, 139
gliding of flagellar axonemal microtubules whose plus ends can be identified in the microscope, 139–140
gliding of microtubules with minus ends fluorescently labeled, 139
materials, 136–137
method, 137–138
latex bead movement along microtubules, 137
microtubule gliding, 138
recipe, 140
troubleshooting, 138
mRNA
EDTA treatment of microsomes to strip membranes of endogenous ribosomes and mRNAs, 177
in exosomes, 60
MS homogenization buffer (1×) (recipe), 151, 154, 157
MS homogenization buffer (2.5×) (recipe), 151
Multivesicular bodies (MVBs), 27

N
NanoACQUITY UPLC system, 20
Nitrogen cavitation, 2
Nitrogen for cell disruption, 73
NP-40, 215–217
Nuclear matrix, 223–226
functional analysis, approaches to, 224–225
analysis of attached DNA, 225
electron microscopy, 225
proteomic analysis, 225
protocol using cytoskeletal buffer, 225–226
schematic diagram, 224f
overview, 223–224
preparation for parallel microscopy and biochemical analyses (protocol), 228–233
discussion, 231–233
considerations for immunofluorescence analysis, 232
considerations for immunoblotting analysis, 232
troubleshooting, 231–233

O
Oleic acid induction of yeast cells, 101
OptiPrep, 92, 98, 100, 103, 105, 156

P
Paclitaxel, 116
isolation of microtubule-based motor proteins by ATP release from paclitaxel-stabilized microtubules (protocol), 131–135
isolation of microtubules and microtubule-associated proteins using paclitaxel (protocol), 123–126
Paclitaxel (10 mM) (recipe), 125, 134

244

© 2015 by Cold Spring Harbor Laboratory Press. All rights reserved.
Pig brain tissue, collecting, 119
Phosphocellulose column buffer (recipe), 130
Phosphate-buffered saline for endosome
Phosphate-buffered saline (PBS) (recipe), 85,
Phase-contrast microscopy, monitoring
Pig brain tissue, collecting, 119
Plant cytoplasmic ribosomes and polysomes
cell extract preparation for, 191, 192
density gradient centrifugation, 192–193
isolating polysomes, 204–205
Plant extraction buffer (recipe), 194
Plant polysome sucrose gradient buffer (recipe), 195
Plant protoplasts, chloroplast isolation from
(protocoll), 159–163
discussion, 162
materials, 159–160
method, 160–161
isolating chloroplasts, 161
isolating protoplasts, 160–161
recipes, 162–163
Plant sucrose cushion buffer (recipe), 194
Plasma membrane markers, using immunoblots
with, 9
Plasma membranes
endosome network and, 27, 28f
lectin-magnetic beads for isolation
(protocoll), 5–9
ConA-magnetic beads preparation, 7
determination of enrichment of plasma
membrane proteins in eluted fraction, 8–9
using immunoblots with plasma
membrane markers, 9
using 5′-nucleotidase activity, 8–9
materials, 5–6
method, 6–9, 6f, 8t
protein concentration determination, 8
purification of plasma membranes from
cells, 7–8, 8t
schematic of isolation, 6f
Plastids, 162
PME buffer (recipe), 121, 126, 135
PME dynein buffer (recipe), 135
PME-G buffer (recipe), 122
PME sucrose solution (recipe), 126
Polycellulose columns, for separation of tubulin
and microtubule-associated
proteins by ion exchange
chromatography, 127–130
Polysomes. See also Ribosomes
isolation of ribosomes and polysomes
(protocoll), 189–195
materials, 189–190
method, 190–193
isolation of ribosomes and
polysomes, 192–193
preparation of cell extracts, 190–192
recipes, 193–195
purification of polysomes (protocoll), 203–205
materials, 203
method, 204–205
recipes, 205
Porin, 104f, 105
Postsynaptic density, 46, 46f, 51
Potassium phosphate buffer (0.5 M, pH 6.7)
(recipe), 146
Potter–Elvehjem homogenizer, 1–2, 152–153,
170, 176, 184, 220
Precipitation
concentrating light membrane fraction by
TCA precipitation, 83–84
concentrating soluble fractions by TCA
precipitatioin, 80–81
for exosome purification, 61
Prokaryotic bind/wash buffer (recipe), 198
Prokaryotic elution buffer (recipe), 199
Prokaryotic polysomes
cell extract preparation for, 191, 192
isolation of, 204
Prokaryotic polysome sucrose gradient buffer
(recipe), 205
Prokaryotic ribosome dissociation buffer
(recipe), 210
Prokaryotic ribosomes
cell extract preparation for, 190–191
density gradient centrifugation, 192
dissociation of ribosomes into large and
small subunits (protocoll), 206–210
materials, 206–207
method, 207–209
recipes, 209–210
troubleshooting, 209
purification of 70S ribosomes (protocoll), 200–202
materials, 200–201
method, 201, 202f
recipes, 202
troubleshooting, 202
Prokaryotic storage buffer (recipe), 199
Protease inhibitors, 142
Protein Assay (Bio-Rad), 143
Protein assay (Bio-Rad), 143
Protein concentration determination, 8
Protein correlation profiling (PCP), 29–30
Proteins, in ribonucleoprotein complex, 187
Proteome
analysis of nuclear matrix, 225
endosome, 28–29
Proteomics, quantitative methods in, 29–30
Protoplasts, chloroplast isolation from plant
(protocoll), 159–163
discussion, 162
materials, 159–160
method, 160–161
isolating chloroplasts, 161
isolating protoplasts, 160–161
recipes, 162–163
PTA/HCl (1% phosphotungstic acid/0.5 M
HCl) (recipe), 146
Puromycin, 167
Q
Q Exactive mass spectrometer, 24–25
R
Rabbit, 28
Rats
lysosome isolation from rat liver (protocoll), 67–71
rough microsome preparation from
(protocoll), 210–213
REAP method of nuclei isolation, 212–213,
213f, 215–218
Recipes
β-glucosaminidase substrate solution, 70
binding medium for phagosomes, 57
brain homogenization buffer, 52
buffer A for CCVs, 16, 21
buffer A for dog pancreas microsomes, 177
buffer A-FS, 16
buffer B for dog pancreas microsomes, 177
buffer C for stripping pancreatic rough
microsomes, 177
catalase activity buffer, 105, 113
chloroplast homogenization buffer, 193
chloroplast lysis buffer, 193
Index

Recipes (Continued)
colloidal iron dextran (FeDex), 75
CS-mannitol buffer, 162
CS-sucrose buffer, 162
cytoskeletal (CSK) buffer, 233
DTT buffer, 105, 113
enzyme buffer for protoplasts, 162
Ficoll (20%), 71
Ficoll (25%), 71
French press buffer for prokaryotic polysomes, 193
French press buffer for prokaryotic 70S ribosomes, 193
fumarase activity buffer, 105
Gdn assay mixture, 145
gradient buffer A, 106, 113
gradient buffer B, 106, 113
gradient buffers A–E for Golgi isolation, 145
HEPES-sorbitol buffer, 162
homogenizing medium for tissue culture homogenizing medium for isolation of homogenizing buffer, 173
homogenizing medium for isolation of nuclei, 222
homogenizing medium for tissue culture cells, 185
hydrogen peroxide solution, 106, 113
hypertonic sucrose buffer, 222
Laemmli sample buffer (4 ×), 233
Laemmli sample buffer (LSB), 85, 91, 94
L-broth supplemented with 10 mM MgSO4,
Laemmli sample buffer (4 ×), 233
sorbitol buffer for spheroplasts, 107, 114
stage tip elution buffer 1, 25
stage tip elution buffer 2, 25
stage tip elution buffer 3, 25
stage tip equilibrium solution, 25
stage tip MS buffer, 25
STE fractionation buffer, 71
STEM fractionation buffer, 57, 75
storage buffer, 210
sucrose solutions for endosome purification, 38, 43
sucrose step density gradient solutions, 157
TAE, 210
tight couples buffer, 202
titanium oxysulfate solution, 107, 114
TKM buffer for rough microsomes, 173
TK20M buffer for rough microsomes, 173
Valap sealant, 140
WS solution for proplasts, 163
YNBO medium, 107, 114
Reduced cytochrome c solution (recipe), 106
Resuspension buffer for plant ribosomes (recipe), 195
Reticulocyte homogenization buffer (recipe), 195
Ribosomes, 187–210
ribosomes (protocol), 179–185
collection of fresh liver, 169
dissociation of ribosomes into large and small subunits (protocol), 206–210
materials, 206–207
method, 207–209
recipes, 209–210
troubleshooting, 209
EDTA treatment of microsomes to strip membranes of endogenous ribosomes and mRNAs, 177
preparation of crude microsomes, 176–177
preparation of fresh liver, 169
preparation of membrane-bound polysomes, 171
preparation of rough microsome fraction, 170
preparation of rough microsome fraction, 171–172
recipes, 173
preparation from tissue culture cells (protocol), 179–185
materials, 179–180
method, 180–184
centrifuging homogenate, 182–183
collecting and processing microsomes, 183–184
harvesting cells, 181
homogenizing cells, 181–182
pretreating the cells, 180
recipes, 185
troubleshooting, 184–185
RSB hypo buffer (recipe), 151
S
Saccharomyces cerevisiae, isolation of peroxisomes from, 97–114
Salt extraction, microtubule-associated proteins (MAPs) isolation by, 124–125
SDB-RPS, peptide fractionation using, 24
SD medium (recipe), 107, 114
SDS-PAGE sample buffer (4 ×) (recipe), 233
Shearing forces, 1–2
Sodium chloride, for nuclear matrix estimation, 223, 225, 228, 230–232

© 2015 by Cold Spring Harbor Laboratory Press. All rights reserved.
Synaptosomes, 45–53
composition, 46f
as model system for studying synaptic
physiology, 45–53
preparation (protocol), 49–52, 50f, 51t
materials, 49–50
method, 50–52
isolation of synaptic vesicles, 51–52
isolation of synaptosomes, 50–51
recipes, 52
schematic diagram, 50t
subcellular fractionation of the brain, 49–52,
50f, 51t
uses for synaptosomal preparations, 46–47

T
TAE (recipe), 210
Taxol, 116
TCA precipitation, in GLUT4 storage vesicle
preparation
concentrating light membrane fraction, 83
concentrating soluble fractions, 80–81
Tight couples buffer (recipes), 202
Tissue culture cells. See also specific protocols
clostrhin-Coated vesicles (CCVs) isolation
from, 11–25
lysosome isolation from, 65–76
mitochondria isolation from (protocol), 149–151
nuclei isolation protocols, 215–222
REAP method, 215–218
sucrose method, 219–222
phagosome isolation from (protocol), 55–58
rough microsome preparation from
(protocal), 179–185
Titanium oxysulfate solution (recipe), 107, 114
TK20M buffer for rough microsomes (recipe), 173
TKM buffer for rough microsomes (recipe), 173
Total Exosome Isolation reagents (Life Technologies), 61
Triton WR1339, 65
Triton X-100
for nuclear matrix, 225, 228, 230
for nuclei isolation, 217–218, 219–221
for rough microsome isolation, 172
Trypsin, for proteome analysis of clathrin-coated
vesicles (CCVs)
in-gel digestion, 19
in-solution digestion, 24
Tubulin, 115, 116, 118. See also Microtubules
binding to paclitaxel, 123–124
fluorescent, 139
isolation in buffer containing glycerol, 120–121
observation of microtubule-based motor
protein activity (protocol), 136–140
separation of tubulin and microtubule-
associated proteins by ion
exchange chromatography
(protocal), 127–130
discussion, 129
materials, 127
method, 128–129
recipes, 129–130
troubleshooting, 129

U
Ultracentrifugation for exosome purification, 60
Ultrafiltration for exosome purification, 60–61

V
Valap sealant (recipe), 140
Vn peptides, 61

W
WS solution for protoplasts (recipe), 163

X
XCalibur software, 24

Y
Yeast, isolation of peroxisomes from, 97–114
YNBO medium (recipe), 107, 114

Z
Zymolase, 98