Index

A
Affinity capture
binding reaction, 391
density gradient ultracentrifugation of protein complexes
centrifugation, 398–399
fraction analysis, 399–400
gradient preparation, 398
materials, 397–398
elution under denaturing conditions
antibody-conjugated bead equilibration, 391
cryogenic disruption, 389–390
extract preparation, 390–391
materials, 388–389
native elution
cleavable tags, 394–395
competitive elution with PEGylOx, 395–396
materials, 393–394
troubleshooting, 396
optimization, 384–386
principles, 383–384
Agar medium, 211
α-factor, G1 synchronization, 243–244
Amyloid-prion buffers, 506–507
Auxotrophic mutants, 12, 15

B
Biofilm
assays
culture and photography, 58–59
materials, 57–58
overview, 50–51
recipes, 59
induction, 50
BioGRID
curation statistics, 578
feedback from users, 588
interaction network visualization
BioGRID viewer, 586
Cytoscape, 586–587
download options and formats, 587–588
overview, 577–578
scope, 579–580
searching for gene or protein of interest, 583–586
user interface, 578
BRB80, 292, 297
BSA. See Bulk segregant analysis
Bulk segregant analysis (BSA)
candidate gene and variant identification, 659
materials, 656–657
overview, 653–654
phenotypically extreme segregant acquisition, 658–659
recipes, 659–660
recombinant cross progeny, 657–658
segment generation, 657
sequencing and causal loci detection, 659
Calling card analysis
advantages and limitations, 533, 535
cloning strain, 538–540
DNA extraction, 541
genomic digestion, 541–542
inverse polymerase chain reaction, 542–543
materials, 536–538
overview, 533–534
plasmid transformation and induction, 540–541
recipes, 544–545
self-ligation, 542
troubleshooting, 543
CalMorph. See High-throughput microscopy
cdc15-2, G1 synchronization, 245–246
Cell cycle
drug-induced arrest, 246
position determination
flow cytometry
data analysis, 261
DNA staining, 260
enzymatic digestion, 260
ethanol fixation, 259
flow cytometry, 260–261
high-throughput staining, 262
materials, 258–259
recipes, 263
rehydration of fixed cells, 259
troubleshooting, 262–263
overview, 240–241
synchronization
centrifugal elutriation
cleanup and preparation for storage, 255
Coulter counting, 252
culture pregrowth and inoculation volume calculation, 250
elutriation setup and sterilization, 251
exhaustive fractionation, 254–255
fraction collection and monitoring, 253–254
G1 cell collection for sampling, 252–253
loading, 253
materials, 248–249
sample preparation, 252
troubleshooting, 255–256
chemical and genetic approaches
G1 synchronization using α-factor mating pheromone, 243–244
M/G1 synchronization using cdc15-2, 245–246
materials, 242–243
overview, 239–240
selection of technique, 256–257
Cell wall
compounds, 199–200
disruption
disruptors, 201–202
imaging, 214–215
materials, 213–214
recipes, 215
fluorescent labeling
materials, 205–206
staining
1,3-β-glucan, 206–207
cell preparation, 206
chitin, 207–208
mannoproteins, 207–208
function, 199
spore wall integrity testing
fly feces analysis, 210–211
materials, 209–210
prey yeast cells
Drosophila feeding, 210
preparation, 210
recipes, 211–212
synthesis and assembly, 200–201
Centrifugal elutriation. See Cell cycle
CgIs. See Chemical–genetic interactions

© 2016 Cold Spring Harbor Laboratory Press. All rights reserved.
Chromosome conformation capture (Hi-C)

- biotin removal, 134
- biotinylation of digested ends, 131
- cross-link reversal and ligation product purification, 132–133
- cross-linking chromatin, 129–131
- digestion, 131
- DNA end repair and A-tailing, 134–135
- efficiency estimation, 133–134
- library
 - aired-end polymerase chain reaction amplification, 137–138
 - fractionation, 135–136
 - sonication, 134
- ligating cross-linked fragments, 131
- ligation product enrichment, 136–137
- materials, 127–129
- recipes, 138–139
- troubleshooting, 138

Chromosome conformation capture

- carbon copy
 - advantages, 125
 - ligating fragments, 124
 - materials, 121–122
 - polymerase chain reaction, 124–125
- probes
 - annealing, 123–124
 - design, 125–126
 - preparation, 122
 - troubleshooting, 125
- cross-linking chromatin, 110
- digestion, 110–111
- end-point polymerase chain reaction, 112–113

Hi-C

- Comet drop-out powder, 639, 644
- Complete minimal (CM) medium, 169–170, 215
- Complete synthetic medium, 497–498
- Complex traits, genetic dissection
 - bulk segregant analysis
 - candidate gene and variant identification, 659
 - materials, 656–657
 - overview, 653–654
 - phenotypically extreme segregant acquisition, 658–659
 - recipes, 659–660
 - recombinant cross progeny, 657–658
 - segregant generation, 657
 - sequencing and causal loci detection, 659
- causal gene and variant dissection, 654
 - challenges, 651–652
 - genome-wide association study, 652–653
 - linkage mapping, 653
- Concanavalin A. See High-throughput microscopy
- Congenic strain
 - conditional effects of mutations, 2–4
 - overview, 1–2
- Continuous culture. See Chemostat culture
- Culture
 - batch culture, 661–662
 - continuous culture. See Chemostat culture
 - optimal growth conditions, 11–12
 - propagating culture, 12–13
 - synchronous meiotic cultures
 - assessment of efficiency and synchrony, 34
 - liquid medium culture, 33–34
 - materials, 32–33
 - overview, 23
 - recipes, 35–36
 - cell synchronization and bromodeoxyuridine labeling, 95–96
 - glass surface preparation, 92–93
 - imaging, 98–99
 - immunodetection, 97–98
 - materials, 90–92
 - plug melting and DNA combing, 97
 - recipes, 100–101
 - simple machine preparation, 93–95
 - troubleshooting, 99
 - overview, 88
 - techniques for study, 88
- CM medium. See Complete minimal medium
- COM drop-out powder, 639, 644
- Complete minimal (CM) medium, 169–170, 215
- Complete synthetic medium, 497–498
- Complex traits, genetic dissection
 - bulk segregant analysis
 - candidate gene and variant identification, 659
 - materials, 656–657
 - overview, 653–654
 - phenotypically extreme segregant acquisition, 658–659
 - recipes, 659–660
 - recombinant cross progeny, 657–658
 - segregant generation, 657
 - sequencing and causal loci detection, 659
 - causal gene and variant dissection, 654
 - challenges, 651–652
 - genome-wide association study, 652–653
 - linkage mapping, 653
- Concanavalin A. See High-throughput microscopy
- Congenic strain
 - conditional effects of mutations, 2–4
 - overview, 1–2
- Continuous culture. See Chemostat culture
- Culture
 - batch culture, 661–662
 - continuous culture. See Chemostat culture
 - optimal growth conditions, 11–12
 - propagating culture, 12–13
 - synchronous meiotic cultures
 - assessment of efficiency and synchrony, 34
 - liquid medium culture, 33–34
 - materials, 32–33
 - overview, 23
 - recipes, 35–36

© 2016 Cold Spring Harbor Laboratory Press. All rights reserved.
Index

Culture (Continued)
sample collection
meiotic recombination analysis, 34–35
surface spreading of nuclei for immunofluorescence analysis, 35
western blot analysis, 35
Cytoscape
BioGRID interaction network visualization, 586–587
data preparation for import, 592
installation, 591–592
networks
annotation, 595–598
loading, 592–594
organization, 594, 596–597
visualization, 594
Cytosine deaminase protein-fragment complementation assay. See Protein-fragment complementation assay

D

DAPI. See, 4′,6-Diamidino-2-phenylindole
Deep mutational scanning
doped synthetic oligonucleotides, 193–194
enrichment score calculation from DNA sequencing output files
enrich output file analysis, 196
materials, 195
troubleshooting, 197
functional selection, 192
high-throughput sequencing, 192–193
library construction, 192
principles, 187–189
sequence-function map analysis, 189
Deletion collections. See Saccharomyces Genome Deletion Project
Density gradient ultracentrifugation. See Affinity capture; Prions
4′,6-Diamidino-2-phenylindole (DAPI), assessment of efficiency and synchrony of meiotic cultures, 34
Dihydrofolate reductase protein-fragment complementation assay. See Protein-fragment complementation assay
Diploids, applications, 13–14
DNA binding motifs. See Transcription factor–DNA binding motifs
DNA combing. See Chromosome replication
DNA sequencing
bulk segregant analysis, 659
high throughput strain sequencing
platforms, 621–623
prospects, 623
library preparation
fragmentation, 627
genomic DNA extraction, 626–627
materials, 625–626
polymerase chain reaction, 628–629
recipes, 629
tailing, 627–628
troubleshooting, 629
DNA synthesis. See Synthetic genome synthesis

E

Electron microscopy, prion amyloids, 484–485
Electron tomography
grid preparation, 310
high-pressure freezing/freeze substitution, 305, 309–310
materials, 308–309
prospects for study, 307
recipes, 311–312
three-dimensional reconstruction, 305–307, 311
tilt series acquisition, 310–311
troubleshooting, 311
yeast specimen preparation for transmission electron microscopy, 303–305
Evaporative light-scattering detection. See Lipids, yeast

F

Fatty acids. See Lipids, yeast
Filamentous growth assays
mitogen-activated protein kinase pathway
materials, 65–66
mucin secretion profiling, 69–70
pectinase assay, 69
recipes, 70–72
western blot, 67–69
overview, 50–51
plate-washing assay
agar invasion, 54–55
materials, 53–54
recipes, 55–56
single-cell analysis
culture and microscopy, 62–63
materials, 61–62
recipes, 64
induction, 49–50
Flow cytometry. See Cell cycle
5-Fluorocytosine solution, 371
5-Fluoroorotic acid plates, 170
Forward genetics
mutant identification and selection, 16–17
overview, 13–14
Freeze-substitution fixative, 311

G

Galactose-Ura plates, 544
Gas chromatography. See Lipids, yeast
GenFlex tags, 477–478
Genome synthesis. See Synthetic genome synthesis
Genome-wide association study (GWAS), complex trait dissection, 652–653
Genotype–phenotype mapping
causality confirmation of genotype–phenotype links
materials, 646
overview, 634
recipes, 649–650
reciprocal hemizygosity, 647–648
troubleshooting, 648–649
overview, 631–632
phenomics, 633
quantitative trait loci mapping
F1 segregant generation, 642
mapping, 642–643
materials, 641–642
overview, 633–634
recipes, 644–645
troubleshooting, 643
Saccharomyces cerevisiae ecology and population genetics, 632
strain isolation and domestication enrichment and isolation, 637
materials, 636
recipes, 639–640
sampling, 637
species identification, 637
strain preparation for laboratory work, 637–638
troubleshooting, 638
Glucose-His plates, 545
Glucose-limited chemostat medium, 670
Glucose-Ura Medium, 545
Glycerophospholipids. See Lipids, yeast
GWAS. See Genome-wide association study

H

Halo assay. See Chemical–genetic interactions
Hi-C. See Chromosome conformation capture

© 2016 Cold Spring Harbor Laboratory Press. All rights reserved.
Index

High-performance liquid chromatography. See Lipids, yeast

High-throughput microscopy
automated image analysis, 268
imaging pipelines, 266–267
morphology studies with CallMorph
concanavalin A coating of microplates, 279
fixation, 278
image acquisition and processing, 279–281
materials, 277–278
recipes, 281
specimen preparation, 279
staining, 278–279
overview, 265–266
synthetic genetic array for fluorescent tagging
drug treatment and medium switch, 273–274
imaging, 274
materials, 271–273
recipes, 275–276
subculture preparation, 273

Homologous recombination-based cloning applications, 76
overview, 73–75
plasmid construction
competent cell preparation
Escherichia coli, 83
yeast, 81–82
DNA fragment preparation, 81
genomic DNA preparation, 82
materials, 78–80
overview, 80, 83–84
plasmid recovery from bacteria, 83
recipes, 84–86
polymerase chain reaction-free recombination, 75
Hydrogen–deuterium exchange, prion amyloids, 485
Hydrophilic interaction chromatography–tandem mass spectrometry. See Metabolomics

I
Immobileized metal affinity chromatography. See Proteomics
Imunoaffinity precipitation. See Proteomics
Intragenic complementation, 13–14
ISO buffer, 691
Isogenic strain, overview, 1–2, 15
Isothermal reaction master mix, 69

K
Knockout marker cassettes. See MX cassettes

L
LB media, 338, 343, 691
LB medium plus ampicillin, 84
LB plates, 338, 343, 591
Lead citrate solution, 312
Linkage mapping, complex trait dissection, 653
Lipids, yeast
challenges in study, 217–218
composition by strain, 218
extraction
cell growth and harvesting, 224
materials, 223
organic extraction, 224–225
troubleshooting, 225
fatty acids, 218–219
gas chromatography
fatty acid methyl ester derivatization, 232–233
materials, 231–232
running conditions, 233–234
troubleshooting, 234
glycerophospholipids, 219–220
high-performance liquid chromatography/evaporative light-scattering detection
materials, 235–236
running conditions, 236–237
troubleshooting, 238
minor components, 220–221
overview of analytical techniques, 221
sphingolipids, 220
sterols, 220
thin-layer chromatography
materials, 227–228
running and development, 228–229
troubleshooting, 229
Lipid–protein interactions. See Protein microarray
Lyticase solution, 498

M
Mass spectrometry (MS). See also Proteomics
metabolomics
amino acid analysis with hydrophilic interaction chromatography–tandem mass spectrometry conditioning samples, 611
culture, 610
materials, 608–610
recipes, 612–613
running conditions, 611–612
sample collection and extraction, 610–611
cell growth and extraction of metabolites, 604–606
materials, 603–604
overview, 601
technique for amyloid purification and identification, 505–506
Mat formation assays
culture and photography, 58–59
materials, 57–58
overview, 50–51
recipes, 59
induction, 50
Meiosis chromosomes
segregation, 21
structure, 22–23
visualization, 24
progression regulation, 23
recombination, 22
recombination analysis
chromosome visualization
fluorescence microscopy, 42
immunodecoration, 41–42
surface spreading of nuclei, 40–41
materials, 38–40
overview, 24
physical analysis
DNA extraction and purification, 42, 44
restriction enzyme digestion, 44
Southern blot, 45–46
recipes, 47–48
S phase, 22
spore formation and viability, 24, 26–30
strain selection for studies, 23
synchronous cultures
assessment of efficiency and synchrony, 34
liquid medium culture, 33–34
materials, 32–33
overview, 23
recipes, 35–36
sample collection
meiotic recombination analysis, 34–35
surface spreading of nuclei for immunofluorescence analysis, 35
western blot analysis, 35
Membrane yeast two-hybrid system (MYTH)
bait generation and validation
integrated MYTH bait generation, 337
materials, 334–336
NubGI test for validation, 337–338
recipes, 338–339
subcellular localization verification, 338

© 2016 Cold Spring Harbor Laboratory Press. All rights reserved.
Membrane yeast two-hybrid system
(MYTH) (Continued)
transitional MYTH bait generation, 336–337
integrated versus transitional MYTH, 332–333
overview, 331–332
screening
bait-dependency testing, 343
materials, 340–341
recipes, 343–345
secondary screening and prey identification, 342–343
transformation, 341–342
MES wash buffer, 47
Metabolomics
amino acid analysis with hydrophilic interaction chromatography–
tandem mass spectrometry
conditioning samples, 611
culture, 610
materials, 608–610
recipes, 612–613
running conditions, 611–612
sample collection and extraction, 610–611
ethanol and glucose analysis in culture media
ethanol spectrophotometric assay, 617–618
glucose spectrophotometric assay, 615–617
materials, 614–615
troubleshooting, 619
mass spectrometry
cell growth and extraction of metabolites, 604–606
materials, 603–604
overview, 601
nuclear magnetic resonance, 601
overview, 599–601
Metal affinity chromatography. See Proteomics
Metal stripping solution, 407
Methotrexate medium, 364
Microscopy. See High-throughput microscopy; Single-molecule total internal reflection fluorescence microscopy
Mitogen-activated protein kinase. See Filamentous growth
MS. See Mass spectrometry
Mucins, secretion profiling in filamentous growth, 69–70
MX cassettes
collections for attainment, 144
gene regulation cassettes, 142–143
introduction into yeast
materials, 146–147
overview, 142
recipes, 151–152
transformation, incubation, and amplification, 148–149
troubleshooting, 149–151
multiple cassettes and selections, 143
overview, 141
polymerase chain reaction amplification, 141–142
recycling
confirmation of pop-out, 157
materials, 153–154
overview, 143–144
pop out cassettes flanked by large MX3 or PR direct repeats with counterselection, 154
without counterselection, 155–156
pop out cassettes flanked by loxP direct repeats, 156
recipes, 158–159
troubleshooting, 157
types and yeast strain genotypes, 147
MYTH. See Membrane yeast two-hybrid system
N
Nitrogen base agar plates, 659
Nitrogen-limited chemostat medium, 671
NMR. See Nuclear magnetic resonance
Nonquenched fluorescent liposome. See Protein microarray
Nuclear magnetic resonance (NMR) metabolomics, 601
solid-state NMR of prion amyloids, 485–486
One-hybrid assay. See Yeast one-hybrid assay
O
One-hybrid assay
PBS. See Phosphate-buffered saline
PCA. See Protein-fragment complementation assay
PCR. See Polymerase chain reaction
Pectinase agar plates, 70–71
Pectinase, filamentous growth assay, 69
PEGylOx. See Affinity capture
Phenol:chloroform, 113, 119–120, 138
Phenomics. See Genotype–phenotype mapping
Phosphate-buffered saline (PBS), 381, 413
Phosphate-limited chemostat medium, 671
Phosphopeptide binding solution, 407
Phosphopeptide elution solution, 407
Phosphopeptides. See Proteomics
Plasmid construction. See Homologous recombination-based cloning
PLATE solution, 357, 371, 381
Polymerase chain reaction (PCR)
calling card analysis and inverse polymerase chain reaction, 542–543
chromosome conformation capture and end-point polymerase chain reaction, 112–113
chromosome conformation capture carbon copy, 124–125
DNA sequencing, 628–629
Hi-C, 137–138
MX cassette amplification, 141–142
synthetic genome synthesis
colony screening PCR, 688–689
finish PCR, 687–688
templateless PCR, 687
transposon-insertion libraries, 167–168
yeast one-hybrid assay genomic and plasmid templates amplification, 531
materials, 530–531
recipes, 532
troubleshooting, 531–532
Posttranslational modifications. See Protein microarray; Proteomics
Potassium acetate medium, 639, 644
Potassium phosphate buffer, 678
Potassium phosphate-buffered solution, 71
Presporulation medium, 36
Prions
approaches for study
biochemical methods, 484
cell biology, 484
computational methods, 484
genetics, 481–483, 488–492
physical studies, 484–486
curing, 482–483, 492
cytoduction
cyclohexamide resistance, 491–492
guanidine curing, 493
induction by overproduction, 492
standard cytoduction, 491
isolation and analysis
agarose gel electrophoresis, 504
density gradient sedimentation, 504
lysate preparation, 502–503
materials, 501–502
recipes, 506–508
technique for amyloid purification and identification
amyloid protein isolation, 504–505
digestion, 505–506
mass spectrometry, 505–506

Index
Index

Prions (Continued)
 troubleshooting, 506
 nomenclature, 482
 overproduction and generation, 492
 phenotype assays, 488–491
 phenotype relationship, 482–483
 transfection
 incubation and growth conditions, 496–497
 materials, 495–496
 overview, 483
 recipes, 497–499
 types in yeast, 481, 483
Protein localization. See Transposon-insertion libraries
Protein microarray
 applications, 417
 lipid–protein interaction analysis
 liposome applying to microarray, 430–431
 materials, 428–429
 nonquenched fluorescent liposome preparation, 429–430
 recipes, 432
 troubleshooting, 431
 overview, 415–416
 postranslational modification assays
 blocking, 435
 detection and processing, 437–438
 materials, 433–435
 postranslational modification reactions, 436
 reaction buffer preparation
 acetylation, 435, 438–439
 phosphorylation, 435, 439
 SUMOylation, 436, 440
 ubiquitylation, 436, 440
 recipes, 438–440
 troubleshooting, 438
 washing, 436–437
 protein–protein interaction analysis
 antibody incubations
 primary antibody, 419–420
 secondary antibody, 420
 blocking, 419
 materials, 418–419
 probing, 419
 recipes, 420–421
 troubleshooting, 420
 RNA-binding protein characterization
 Cy5 labeling of RNA probe, 424–425
 materials, 422–423
 recipes, 427
 RNA-binding assay, 425–426
 troubleshooting, 426
 Protein-fragment complementation assay
 (PCA)
 cytosine deaminase protein-fragment complementation assay
 Cdk1 protein interaction detection, 368–370
 expression plasmid construction, 368
 FCY1 gene deletion, 368
 image analysis, 370
 materials, 366–367
 protein–protein interaction detection in different cyclin
 deletion strains, 370
 recipes, 371–372
 troubleshooting, 370
dihydrofolate reductase protein-fragment complementation assay
 homologous recombination of fragments, 352
 large-scale screening
 bait strain preparation, 353
 image analysis, 354
 overview, 352–353
 prey strain preparation, 353–354
 statistical analysis, 355
 tray incubation, 354
 materials, 350–352
 recipes, 357–358
 troubleshooting, 355–356
 general considerations, 348–349
 genotype-to-phenotype mapping of protein complexes and
 interaction networks
 diploid strain construction, 362
 gene deletion introgression into DHFR PCA strains, 361
 image and statistical analysis, 362–363
 materials, 359–360
 recipes, 364–365
 sporulation and recombinant haploid strain selection, 361–362
 troubleshooting, 363
 principles, 347–348
 real-time assay
 applications, 378–379
 cell preparation
 fluorescence microscopy, 376–378
 fluorometric analysis using infrared fluorescence protein, 377
 homologous recombination of fragments, 375–376
 materials, 373–375
 recipes, 380–381
 transformation of expression plasmid pairs, 375
 troubleshooting, 378
Protease K solution, 100, 263
Protein–protein interactions. See Affinity capture; BioGRID;
 Membrane yeast two-hybrid system; Protein-fragment
 complementation assay; Protein microarray;
 Proteomics; Yeast two-hybrid system
Proteomics
 immobilized metal affinity chromatography of phosphopeptides
 binding conditions, 406
 filtration tip preparation, 406
 materials, 404–406
 recipes, 407
 resin preparation, 405–406
 troubleshooting, 407
 washing, elution, and filtration, 406–407
 immunoaffinity precipitation of modified peptides
 antibody conjugation to agarose beads, 410
 incubation conditions, 411
 materials, 409–410
 peptide washes and elution, 411–412
 recipes, 413
 sample preparation for liquid chromatography-tandem mass spectrometry, 412
 troubleshooting, 412–413
 washing and storage of beads, 410–411
 postranslational modification types, 401–402
 protein microarray. See Protein microarray techniques, 402–403
 PTC buffer, 498
Q
 Quantitative trait loci. See Genotype–phenotype mapping
R
 Reciprocal hemizygosity. See Genotype–phenotype mapping
 Recombination. See Homologous recombination-based cloning;
 Meiosis
 RNA-binding proteins. See Protein microarray
 RNase A, boiled, 363

© 2016 Cold Spring Harbor Laboratory Press. All rights reserved.
Saccharomyces Genome Database (SGD)
annotations, 558, 570–572
biochemical pathway analysis, 561–562
data mining
microarray data exploration, 568–569
YeastMine, 566–568
genome feature exploration, 574–576
mutant phenotype analysis, 562–564
ontology, 558, 570–572
overview, 557–558
reference genome sequence, 558
user interface, 558–559
Saccharomyces Genome Deletion Project
applications, 176
collection attainment, 184
functional profiling of collections
fitness measurements
liquid medium culture, 182
pool construction and growth, 182–183
solid medium culture, 181–182
inoculation of collections, 180
materials, 179–180
principles, 175–176
recipe, 184
troubleshooting, 183
overview, 173–175
Saccharomyces sensu stricto
enrichment medium, 639
Salmon sperm DNA solution, 343
SC medium. See Synthetic complete medium
SCE buffer, 100
SDE plates, 151
SDS gel loading buffer, 71
SGA. See Synthetic genetic array
SGD. See Saccharomyces Genome Database
Single-molecule total internal reflection
fluorescence microscopy
applications, 284–285
coverslip cleaning and functionalization
lipid passivation, 290–292
materials, 287–289
recipes, 292
silanization, 289–290
data analysis, 299–301
principles, 283–284
reaction preparation for imaging
flow chamber assembly, 295–296
materials, 294–295
microtubule binding interactions
dynamic microtubules, 297
paclitaxel-stabilized microtubules, 296–297
recipes, 297
Site-directed mutagenesis, 17–18
SLAHD plates, 64
Sodium acetate buffer, 113, 120, 138
Sodium phosphate solution, 281, 338, 344
Sorbitol solution, 629
SOS medium, 499
Southern blot, meiotic recombination
analysis, 45–46
Spheroplast fixation solution, 47
Spheroplast lysis buffer, 47
Spheroplast storage buffer, 35
Sphingolipids. See Lipids, yeast
SPM plates, 30
SPO agar, 212
Spore
mutation effects on formation and viability, 24
sporulation efficiency and viability
analysis from tetrad dissection, 27–29
Sporulation medium, 36, 459–460, 660
SSC, 47
ST buffer, 499
STC buffer, 499
Sterols. See Lipids, yeast
Strains, Saccharomyces cerevisiae
choice, 6–7
conditional effects of mutations, 2–4
congenic versus isogenic strains, 1–2
expansion, 4–5
genotype–phenotype mapping. See Genotype–phenotype
mapping
high throughput sequencing. See DNA
sequencing
isolation and domestication
enrichment and isolation, 637
materials, 636
recipes, 639–640
sampling, 637
species identification, 637
strain preparation for laboratory work, 637–638
troubleshooting, 638
lipid composition, 218
meiosis studies, 23
prospects, 7
resources, 4–6
spore wall integrity testing. See Cell wall table, 3
yeast two-hybrid system, 316
Sulfate-limited chemostat medium, 671
Synthetic amino acid dropout medium, 85
Synthetic complete (SC) medium,
Synthetic defined medium, 55–56, 64, 381, 644, 649–650
Synthetic dextrose medium, 492
Synthetic dextrose plates, 151–152
Synthetic drop-out medium, 338–339, 344
Synthetic genetic array (SGA)
alternative techniques, 442–443
analysis and imaging, 454, 456–457
applications, 443, 445, 457–458
deletion mutant array construction, 454–455
genetic interaction quantification, 443
high-throughput microscopy, synthetic
genetic arrays for fluorescent tagging
drug treatment and medium switch, 273–274
imaging, 274
materials, 271–273
recipes, 275–276
subculture preparation, 273
materials, 448–451
mutant strain collections, 442
pin tool sterilization, 453–454
principles, 441–442, 444
query strain construction, 450, 452–453
recipes, 458–461
Synthetic genome synthesis
building block synthesis from oligonucleotides
assembly, 689
cloning, 688
overlapping oligonucleotide preparation, 687
polymerase chain reaction
colony screening PCR, 688–689
finish PCR, 687–688
templateless PCR, 687
recipes, 691
transformation, 688
troubleshooting, 689–690
materials, 685–686
Synthetic lysine dropout medium, 85
Synthetic minimal medium, 612–613

TAPI. See Technique for amyloid purification and identification
TB medium. See Terrific broth medium
TBE buffer, 139, 519, 525–528, 532
TBS. See Tris-buffered saline
TBST, 71, 432
TCA buffer, 71
TE buffer, 48, 113, 120, 139, 171, 629
Technique for amyloid purification and identification (TAPI)
amyloid protein isolation, 504–505
Index

Technique for amyloid purification and identification (TAPI) (Continued)
 digestion, 505–506
 mass spectrometry, 505–506
Terrific broth (TB) medium, 86
Tetrad genetics
 crossing over and gene conversion analysis in meiosis, 29–30
 overview, 14–15
Thin-layer chromatography. See Lipids, yeast
3C. See Chromosome conformation capture
TLE buffer, 139
Total internal reflection fluorescence microscopy. See Single-molecule total internal reflection fluorescence microscopy
Transcription factor–DNA binding motifs
 consensus sequences, 550
 enrichment computation, 554–555
 generation, 550–552
 overview, 547
 putative binding site identification, 553–554
 repositories, 552–553
 scoring, 547–549
 visualization, 549
Transmission electron microscopy. See Electron tomography
Transposon calling cards. See Calling card analysis
Transposon-insertion libraries
 advantages and limitations, 163
 applications, 163–164
 features, 162–163
 overview, 161
 phenotypic screening and protein localization
 Cre-lox recombination to generate epitope-tagged alleles, 168
 insertion site identification with inverse polymerase chain reaction, 167–168
 materials, 165–166
 recipes, 169–171
 screening of transformants, 167
 transformation, 166–167
 resources, 162
Tris-buffered saline (TBS), 48, 423, 427, 432, 507
Tween wash buffer, 139
Two-hybrid system. See Membrane yeast two-hybrid system; Yeast two-hybrid system
V
Vitamin stock solution, 672
W
Western blot
 mitogen-activated protein kinases in filamentous growth, 67–69
 synchronous meiotic cultures, 35
X
X-Gal plates, 171
X-ray fiber diffraction, prion amyloids, 485
Y
YAPD medium, 519
YAPD plates, 520, 526, 529, 532
Yeast one-hybrid assay
 advantages and limitations, 511–512
 bait strain generation
 autoactivity testing, 517
 integrated baits
 glycerol stock preparation, 518
 identity confirmation, 517–518
 materials, 514–515
 recipes, 519–520
 reporter construct linearization, 515–516
 transformation, 516–517
 troubleshooting, 518
 colony lift β-galactosidase assay
 culture and incubation, 528
 materials, 527–528
 recipes, 529
 troubleshooting, 528
 library screening
 double-positive yeast identification, 523
 gap-repair for interaction retesting, 524–525
 materials, 521–522
 recipes, 525–526
 transformation, 522–523
 polymerase chain reaction of genomic and plasmid templates
 amplification, 531
 materials, 530–531
 recipes, 532
 troubleshooting, 531–532
 principles, 509–511
Yeast two-hybrid system. See also Membrane yeast two-hybrid system
 array-based screening, 316–317, 325–327
 bait self-activation testing, 315, 323–324
 false negatives, 317
 false positives, 317–318
 host strain selection, 316
 library screening
 advantages and disadvantages, 316
 mating, 325
 prey and bait culture preparation, 324
 materials, 319–322
 overview, 313
 pooled array screening, 317
 rationale, 313–315
 recipes, 328–329
 transformation, 322–323
 troubleshooting, 327–328
 vector choice, 315, 320
YeastMine. See Saccharomyces Genome Database
YEP-GAL medium, 72
YP agar, 212
YPAD medium, 339, 344–345
YPG medium, 493
YPG plates, 30, 36
YPGal medium, 159
Z
Z-buffer, 529
Zymolase 100-T, 210
Zymolase buffer, 48
Zymolase suspension, 532