Index

A

- **Acute myeloid leukemia (AML)**, 116, 261
 - Adaptation
 - cancer evidence, 6–7
 - cancer treatment considerations, 8–9
 - genetic novelties in cancer, 9–10
 - life span longevity considerations in somatic cell complex adaptation, 3–5
 - organismal versus somatic evolution, 5–6
 - Adaptive therapy (AT), 277–279
 - AKT, 79, 115
 - ALK, 263
 - **AML.** See Acute myeloid leukemia
 - Aneuploidy. See also Chromosomal instability
 - adaptation driver, 95
 - causes
 - centrosome amplification, 87–88
 - chromosome cohesion defects, 88
 - microtubule attachment defects, 87
 - mitotic checkpoint defects, 85–87
 - mutations, 88–90
 - consequences, 73–74
 - tolerance mechanisms, 93–94
 - Angiopoietin-2, 230
 - APC, 16, 30
 - APC, 90, 265
 - APOBEC, 22, 92
 - APOBEC3, 109
 - APRIL, 177
 - AT. See Adaptive therapy
 - **ATM**, 172–173
 - **AURKA**, 87
 - **AURKB**, 87
 - **B**
 - **B2M**, 251
 - **BAF.** See B-allele frequency
 - **BAFE**, 177
 - **B-allele frequency (BAF)**, subclonal reconstruction, 48–51, 59
 - Barrett’s esophagus, 131, 133, 135, 138–139
 - **BCR**, 175
 - **BCR-ABL**, 105
 - Big Bang model, tumor growth dynamics, 19–21, 23–24
 - Biopsy. See Liquid biopsy
 - **BIRC3**, 173
 - **BRAF** 106–108, 213, 263, 266–267
 - **BRCA1**, 87, 90, 116, 135
 - **BRCA2**, 30, 135
 - Breast cancer
 - cancer stem cells, 115, 117–118, 120–121
 - chromosomal instability, 93
 - ductal carcinoma in situ, 18, 122, 132, 140
 - epithelial-mesenchymal transition and chemotherapy resistance, 118–121
 - gene mutations, 115, 117
 - intratumor heterogeneity
 - cancer evolution, 121–122
 - clinical implications, 123
 - regulatory networks in organogenesis and tumorigenesis, 117–118
 - **tumorigenesis drivers**, 116–117
 - **BUB1**, 85, 87
 - **BUB1B**, 90
 - **BUBR1**, 85
 - **C**
 - **CAF.** See Cancer-associated fibroblast
 - **CALR**, 31
 - Cancer-associated fibroblast (CAF), 209, 224, 234
 - **Cancer cell fraction (CCF)**
 - estimation, 43–45
 - phylogenetic tree reconstruction, 51
 - Carboplatin, 279
 - **CASP-8**, 289
 - **CCF.** See Cancer cell fraction
 - **CCL2**, 211, 215
 - **CCL3**, 177
 - **CCL4**, 177
 - **CCND3**, 251
 - **CCNE1**, 253, 255
 - **CCR2**, 215
 - **CD40**, 224
 - **CD160**, 77
 - **CD244**, 177
 - **CDK4**, 289
 - **CDKN2A**, 109
 - CE index. See Clonal expansion index
 - Cellular prevalence (CP), 43, 45, 51
 - **CENPE**, 87
 - Centrosome amplification, 87–88
 - **CHK1**, 90
 - **CHK2**, 87, 90
Index

Chromosomal instability (CIN). See also Aneuploidy adaptation driver, 95
aneuploidy consequences, 73–74
drug resistance role, 96
dynamics in clonal evolution and therapeutic response, 77–79
genome doubling during tumor evolution, 74–75
genomic instability interplay, 90–93
numerical instability linking to structural instability, 75–76
origins, 73
overview, 71–73
propagation determinants
aneuploidy tolerance mechanisms, 93–94
sporadic episodes and compensation, 94–95
sustainable versus lethal levels of instability, 93
prospects for study, 96–97
rate, 73
recurrence and metastasis role, 96
subclonal therapeutic resistance, 79

tumor progression role, 95

Chromothripsis, 76

Chronic lymphocytic leukemia (CLL)
biological and clinical heterogeneity, 171–172
clonal evolution, 262
coevolution with host immune cells
advantages of study, 170–171
co-opting of normal immune function, 175–177
immune suppression and escape, 177–179
overview, 174–175
prospects for study, 179–180
epigenetic heterogeneity impact on clonal evolution, 173–174
genetic heterogeneity, 172–173
immune response, 179
treatment resistance mechanisms, 107–108

Chronic myeloid leukemia (CML), 105
CIN. See Chromosomal instability
Circulating tumor cell (CTC), 264–265
CITUP, 249
c-Kit, 105

CLL. See Chronic lymphocytic leukemia
Clonal dynamics
clonal evolution overview, 246–247
clonal genotypes and phylogenies, 248–249
follicular lymphoma, 249–252
mutation clustering by cellular prevalence, 248
ovarian cancer peritoneal spread, 251, 253–255
prospects for study, 253, 256
single nucleotide variants, 246–249
whole-genome sequencing, 247–248
workflow for evolutionary history reconstruction, 249

Clonal expansion (CE) index, 62–63

Clonal expansion overview, 15–16

posttransformational clonal evolution, 19
pretumor progression and factors affecting clonal expansion, 16–19
punctuated mutational processes and clonal stasis, 21–23
rate in Barrett’s esophagus, 4

CML. See Chronic myeloid leukemia
Colorectal cancer (CRC), 263, 265–266
Convergent evolution, cancer, 7–8
Copy number. See B-allele frequency; Somatic copy-number aberrations

CP. See Cellular prevalence
CRC. See Colorectal cancer
CSF1, 211, 215
CTC. See Circulating tumor cell
CTLA-4, 177–178, 215, 287, 290–293

CXR4, 209

D

Dirichlet process (DP), 46–47, 54
DNA methylation, rate in somatic cells, 4

DNMT3, 16

DP. See Dirichlet process
Drug resistance. See Resistance
Ductal carcinoma in situ. See Breast cancer

E

E2F, 87

Ecosystem
cancer, 151–152
ecoevolutionary models of cancer, 157–160

EGF. See Epidermal growth factor
EGFR, 190, 213–214, 266–267

EMT. See Epithelial-mesenchymal transition
Ep-Mes trans, 214, 229, 234–235

Epidermal growth factor (EGF), 151

Epidermal growth factor receptor inhibitors
chromosomal instability and resistance, 79
geneic resistance mechanisms, 105–107

Epigenetics
chronic lymphocytic leukemia epigenetic heterogeneity impact on clonal evolution, 173–174
order of mutation, 34

Epithelial-mesenchymal transition (EMT), breast cancer and chemotherapy resistance, 118–121

ERBB2, 253, 266

ERBB4, 267

ER, 79, 211, 213

Esh2, 30

Esophageal cancer, intratumor heterogeneity, 18

EZH2, 251
FAK, 214
FDC. See Follicular dendritic cell
FGFR, 115
Fibromodulin, 179
FL. See Follicular lymphoma
Follicular dendritic cell (FDC), 177
Follicular lymphoma (FL), clonal dynamics, 246, 249–252
Gastric cancer, 93
Gastroesophageal reflux disease (GERD), 138
Genomic instability, chromosomal instability interplay, 90–93
GERD. See Gastroesophageal reflux disease
Gleevec, 103–104
GLI1, 118
GLI2, 118
gp100, 288
Helicobacter pylori, 138, 280
Hepatocyte growth factor (HGF), 213
HGF. See Hepatocyte growth factor
HIF1, 212, 214–215, 229, 275
HIV. See Human immunodeficiency virus
HMGB1, 212
Homeostasis
adaptive therapy and restoration, 161–163
ecoevolutionary models of cancer, 157–160
modeling, 150–151
overview, 149–150
Human artificial chromosome (HAC), 110
Human immunodeficiency virus (HIV), 267–268, 276
Hypoxia
intratumor genetic heterogeneity and tumor progression, 229–231
prognostic value, 229
vascular function improvement to overcome heterogeneity
overview, 230–232
vascular normalization, 232–234
vessel decompression, 234–235
IL-10. See Interleukin-10
Immunotherapy
clinical trials, 287–288
historical perspective, 285–287
intratumor heterogeneity and antitumor immunity, 291–292
mutanome targeting and prospects, 293–294
neoantigens
reactive T cells and immunotherapy response, 290–291
recent studies, 289–290
T-cell receptor repertoire and clonality, 292–293
tumor infiltrating lymphocyte antigens, 287–288
Interleukin-10 (IL-10), 294
Interleukin-12 (IL-12), 178
Intratumor heterogeneity (ITH)
antitumor immunity, 291–292
applications and challenges, 57–59, 68
breast cancer
cancer evolution, 121–122
clinical implications, 123
clinical impact
chemotherapy response, 261–262
clonal evolution, 260–261
targeted therapy resistance, 262–263, 266–267
clonal evolution, 18–23
evolution and selection, 152–157
liquid biopsy for measurement, 263–265
somatic copy-number aberrations for tumor evolution reconstruction
clonal expansion index and tumor resistance, 62–63
intratumor heterogeneity quantification, 61–62
minimum-event distance, 59–60
overview, 59
phasing of profiles, 60–61
tumor progression mode determination
linear progression model, 64
overview, 63–64
parallel progression model, 64–67
variable evolutionary rate detection, 67–68
tumor progression, 229–231
vascular function improvement to overcome heterogeneity
overview, 230–232
vascular normalization, 232–234
vessel decompression, 234–235
Intratumor lymphocyte ratio (ITLR), 196
IRF4, 178
ITH. See Intratumor heterogeneity
ITLR. See Intratumor lymphocyte ratio
JAK2, 32–34, 37
Index

K
- KIF2B, 87
- KIF2C, 87
- KIFC1, 88
- KIT, 263
- KRAS, 106–107, 266
- K-Ras, 79, 96, 105

L
- LAG-3, 291
- Liquid biopsy
 - drug resistance monitoring, 265–266
 - intratumor heterogeneity measurement, 263–265
- Lung cancer. See Nonsmall cell lung cancer

M
- MAD1, 87
- MAD2, 79, 87, 96
- MAGE-A3, 288
- Magnetic resonance spectroscopy (MRS), Big Bang growth dynamics, 21
- Markov chain Monte Carlo (MCMC), 249, 253
- MART-1, 288
- Maximum tolerated dose (MTD), 274–275
- MCMC. See Markov chain Monte Carlo
- MDR, 274
- MDR1, 276, 280
- MEDIC. See Minimum event distance for intra-tumor copy-number comparisons
- MEK1, 266
- MET, 266
- Microenvironment. See Tumor microenvironment
- Minimum event distance for intra-tumor copy-number comparisons (MEDIC), 60–63
- Mirrored subclonal allelic imbalance (MSAI), 60–61
- MM. See Multiple myeloma
- Most recent common ancestor (MRCA), 41, 130
- MPL, 37
- MRCA. See Most recent common ancestor
- MRS. See Magnetic resonance spectroscopy
- MSAI. See Mirrored subclonal allelic imbalance
- MTD. See Maximum tolerated dose
- MTOR, 109
- Multiple myeloma (MM), 262
- Mutation
 - order and cancer evolution
 - clinical significance, 36–37
 - mechanisms
 - extrinsic cellular environmental impact, 34, 36
 - intrinsic epigenetic impact, 34
 - overview of mechanisms, 35
 - target cell pool production, 34
 - overview, 31–32
 - prospects for study, 37–38
 - TET2 and JAK2 order of mutation, 32–34, 37
 - rate in somatic cells, 4
- MYD88, 175

N
- Neutral evolution, cancer, 10
- NF-κB. See Nuclear factor-κB
- NFI, 253
- Non-small-cell lung cancer (NSCLC), 57, 93, 291
- NOTCH1, 172–173
- NRAS, 106, 266
- NSCLC. See Non-small-cell lung cancer
- Nuclear factor-κB (NF-κB), 175
- NY-ESO-1, 288

O
- Ovarian cancer
 - chromosomal instability, 93
 - clonal dynamics of peritoneal spread, 251–255
 - somatic copy-number aberrations for tumor evolution reconstruction
 - clonal expansion index and tumor resistance, 62–63
 - intratumor heterogeneity quantification, 61–62
 - minimum-event distance, 59–60
 - overview, 59
 - phasing of profiles, 60–61
 - tumor progression mode determination
 - linear progression model, 64
 - overview, 63–64
 - parallel progression model, 64–67
 - variable evolutionary rate detection, 67–68

P
- p21, 94
- p38, 94
- p33, 30–31, 280
- PD-1, 177–178, 215, 287, 291, 293–294
- PD-L2, 291
- PDGFR, 105
- PDGERA, 190
- PGA. See Precancer Genome Atlas
- P-glycoprotein (PgP), 274–277, 280
- PgP. See P-glycoprotein
- PHD2, 215
- PIK3CA, 108–109, 115, 123, 267
- PIK3CA, 117
- PIN. See Prostatic intraepithelial neoplasia
- POT1, 173

© 2017 Cold Spring Harbor Laboratory Press. All rights reserved.
Treatment resistance. See Resistance
TRP-1, 288
TRP-2, 288
Tumor microenvironment (TME)
 abnormal cells, 223–225
cancer–stroma interplay under cytotoxic agents,
 210–212
composition, 207–210
eextracellular matrix, 227–228
metabolic microenvironment, 228
overview, 221–223
premalignancy, 138–139
resistance
 microenvironment and tumor evolution, 214
targeted therapy resistance mechanisms, 213
therapeutic targeting, 214–216
spatial heterogeneity
 computer mapping, 192
diagnostic, prognostic, and predictive biomarkers, 191
overview, 189–191
prospects for study, 201–202
quantitative analysis
 cancer and immune cell colocalization, 194
 fractal dimensions, 198, 200
 immune–cancer hotspots, 194–196
 immune infiltrate, 193
 immune measure comparison, 196–198
 intratumor lymphocyte ratio, 196
 overview, 192–193
spatial scale challenge, 201
spatial tessellation challenge, 200–201
tumor resource heterogeneity, 198
therapeutic targeting, 191–192
stromal modulation of radiotherapy response, 212–213
vascular function improvement to overcome heterogeneity
 overview, 230–232
 vascular normalization, 232–234
 vessel decompression, 234–235
vessels and intratumoral pressure, 225–227
TWIST, 119

V
VAF. See Variant allele frequency
Variant allele frequency (VAF), 42–43, 45, 248–251
Vascular endothelial growth factor (VEGF), 211–212, 223, 230
VDR, 235
VEGF. See Vascular endothelial growth factor

W
WNT, 90

Z
ZEB1, 120