Index

A
AAB-003. See Bapineuzumab
ACC-001, 621–622
AD. See Alzheimer's disease
ADAM10, 517
ADARB2, 485
AEF. See Amyloid enhancement factor
Affitope, 621–622
AGD. See Argyrophilic grain disease
α-Synuclein, 655
brain expression
cytoskeleton, 287
dendoplasmic reticulum, 287
Golgi, 287
mitochondria, 286–287
nucleus, 287
overview, 285
synapse, 286
cell studies of prions, 308–310
cellular pools, 279, 283
conformational change in disease, 307–308
degradation, 288
functions
chaperone activity, 290–291
dopamine synthesis and transport, 291
lipid transport and packaging, 290
neurotransmitter release and synaptic plasticity, 291–292
overview, 289–290
vesicle trafficking, 291
history of study, 277–279
intracelluar trafficking, 334–337
intracellular injection of brain samples from dementia with Lewy bodies and multiple system atrophy patients, 312–314
multiple system atrophy
aggregation modeling in vitro, 322–324
glial cytoplasmic inclusions, 321–322
mutations, 2–3, 15, 348
neuropathology, 322
prion propagation in cell culture, 324–325
prion transmission in mice, 325–327
mutation in disease
overview, 305–306, 343–344
Parkinson's disease
copy number mutations, 345–346

Alzheimer's disease (AD), 655. See also Amyloid-β; Amyloid precursor protein
epidemiology, 1, 189
familial disease mutations, 9
familial versus sporadic, 203
immunotherapy targeting of amyloid-β active immunization, 620–622
overview, 9, 619–620
passive immunization, 622–625
prospects, 625–626
mouse models, 191–193
neuropathology, 175–176, 190, 617–618
progression and prion accumulation, 199
transmissibility studies, 3–4, 11
unifying hypothesis, 9–10
2-Aminothiazole (AMT)
chronic wasting disease studies in cell culture, 103
prion strain resistance, 51–52
AMT. See 2-Aminothiazole
Amylin. See Islet amyloid polypeptide
Index

Amyloid-β, 655

Alzheimer’s disease pathogenic cascade, 177
antibody-mediated clearance, 619–620
binding sites for oligomers and synaptic toxicity
ephrin receptors, 247–248, 252–253
epidermal growth factor receptor, 250, 252–253
FcyRIIb, 248, 252–253
functions of receptors, 251–253
insulin receptor, 250, 252–253
LilrB2, 249, 252–253
nAChR a7, 245, 252–253
NgR1, 247, 252–253
overview, 241–243
p75NTR, 246–247, 252–253
PrPc, 243–245, 252–253
RAGE, 245–246, 252–253
reversibility of binding, 253–254
selectivity for oligomers versus monomers,

transmission electron microscopy, 260
X-ray scattering, 261–262
Amyloid enhancement factor (AEF), 567–568
Amyloidosis, noncerebral
biochemical characterization of proteins, 565
fibril structure, 565–566
islet amyloid peptide
coregulation, 554–556, 573–574
cross-seeding with other protein aggregates,

Amyloid plaque, 655. See also Alzheimer’s disease;
Amyloid-β; Amyloidosis
Amyloid precursor protein (APP), 655
defects in Alzheimer’s disease
overview, 191, 204
Down syndrome, 191, 204–205
duplication, 205–206
autosomal-dominant missense mutations
Aβ domain, 207
amino-terminal domain, 207
carboxy-terminal domain, 207
neuropathological profile, 207, 209
overview, 206, 208
A673V mutation
Aβ formation effects, 209
neuropathological profile, 209
protective recombinant mutant, 209–210
gene, 203
processing, 190, 204
structure, 203–204
Amyotrophic lateral sclerosis (ALS), 656
C9ORF72 disease
clinical presentation, 414
mutation distribution and effect, 414–415
pathogenic mechanism, 415–416
pathological findings, 415
clinical phenotypes, 352–354
epidemiology, 427

© 2017 by Cold Spring Harbor Laboratory Press. All rights reserved.

FUS disease
- clinical presentation, 412–413, 461–463
- mutation distribution and effect, 413
- pathogenic mechanism, 413–414
- pathological findings, 413, 463–465

genetics
- angiogenin, 382
- C9ORF72, 381, 385
- CHCHD10, 379
- dynactin, 382–383
- FUS, 379–381, 385
- genome-wide association studies, 385–391
- genomic structural variation, 391
- hnRNPA1, 381
- hnRNPA2B1, 381
- juvenile-onset disease genes, 384–385
- matrin-3, 382
- modifying genes
 - ARHGEF1, 394
 - ataxin 2, 393
 - chromogranin B, 394
 - CX3CR1, 393
 - DMT1, 393–394
 - ephrin A4, 392–393
 - MMP9, 393
 - NIPA1, 393
 - TMEM106B, 394
 - TREM2, 394
- optineurin, 378–379
- overview, 368–376, 407–408
- profilin-1, 383
- prospects for study, 394–395
- SOD1, 370, 377
- TBK1, 378–379
- TDP-43, 379
- tubulinA4A, 383–384
- twin studies, 391–392
- valosin-containing protein, 378

inherited disease, 17
- neuropathological heterogeneity, 354–356
- overview, 351–352, 367–368
- prion-like spread in progression, 418–419
- progression, 356–359

SOD1 disease
- clinical presentation, 406, 410
- mutation distribution and effect, 410
- pathogenic mechanism, 410
- pathological findings, 410
- prevalence, 406

TDP-43 disease
- clinical presentation, 410–411
- mutation distribution and effect, 411–412
- pathogenic mechanism, 412, 433–435
- pathological findings, 412, 428
- therapeutic targeting, 436–439

AN1792, 620–621
- Angiogenin, amyotrophic lateral sclerosis genetics, 382
- Anle138b, 603, 607–608
- APH1, presenilin complex, 218
- APOE4, 203
- APP. See Amyloid precursor protein
- Argyrophilic grain disease (AGD), 158, 452, 656
- ARHGEF1, amyotrophic lateral sclerosis modifying gene, 394
- Ataxia, 656. See also specific diseases
- Ataxin 2
 - amyotrophic lateral sclerosis modifying gene, 393
 - therapeutic targeting, 437
- ATTR amyloidosis. See Transthyretin
- Autophagy
 - Huntington’s disease, 521–522
 - tau modulation, 646
- Autosomal heredity, 656
- Avagacestat, 227

B
- Bapineuzumab (AAB-003), 622–623
- Basophilic inclusion body disease (BIBD)
 - FUS disease neuropathology, 469–469
 - overview, 468
- BDNF. See Brain-derived neurotrophic factor
- BIBD. See Basophilic inclusion body disease
- Bioluminescence imaging (BLI), 656, prion disease
 - progression in mice, 588
- BLI. See Bioluminescence imaging
- BMS-869780, 230, 232
- Bovine spongiform encephalopathy (BSE), 36, 579, 656
- Brain-derived neurotrophic factor (BDNF), 517, 519
- Brown–Vialetto-Van Laere (BVVL) disease, 385
- BSE. See Bovine spongiform encephalopathy
- BVVL disease. See Brown–Vialetto-Van Laere disease

C
- C9ORF72, 656
 - amyotrophic lateral sclerosis defects
 - clinical presentation, 414, 478
 - mutation distribution and effect, 414–415
 - pathogenic mechanism, 415–416
 - pathological findings, 415
 - disease risk with intermediate repeat alleles and flanking region indels, 505
 - double gene hits, 507
 - frontotemporal lobar degeneration
 - dipeptide repeat in neuropathology, 485–490
 - overview, 478, 480–481, 499–500
 - therapeutics and biomarkers, 490–491
 - gene structure, 500
Index

C9ORF72 (Continued)
loss of function, 479–482
promoter methylation, 505
protein structure and function, 414
repeat expansion
antisense oligonucleotides, 490
biomarkers, 490, 507
clinicopathological heterogeneity, 501–503
frequency of expansion, 500–501
history of study, 500
origins, 505–506
overview, 478–479
pathogenic mechanisms, 506–507
size variability, 503–505
transcript neurotoxicity, 482–485
splice variants, 479–481
prospects for study, 106–107
transmission
experimental, 98–99
natural, 97–98
zoonotic potential, 106
CJD. See Creutzfeldt–Jakob disease
Clusterin, 645
Compound B, 582–583, 587, 589, 604, 606–607, 622
Concussion, 657. See also Chronic traumatic encephalopathy
Conformational-dependent immunoassay (CDI), prion strain characterization, 47
Congo red, 150–152, 581–582
Copper, PrP binding, 6
Corticobasal degeneration (CBD), 133, 168, 452, 626, 657
CPEB, 432, 434, 542, 657
Crenezumab, 625
Creutzfeldt–Jakob disease (CJD), 657
amyloid-β lesions, 183
animal models, 580–581
clinical implications of prions, 20
familial disease, 4–6, 569, 658
iatrogenic disease, 660
clinical features, 83
diagnosis, 83
epidemiology, 83
neuropathology, 83–84
mouse models
A224V, 67
D178N, 67
E200K, 66–67
overview, 66, 68
T183A, 67
onset of neurodegeneration, 6
preclinical diagnosis, 608–609
prion protein mutations, 1–2, 58
prion strains
adaptation, 49
overview, 36–37
sporadic disease, 664
clinical features, 75
diagnosis, 75–76
epidemiology, 74–75
pathology, 76–80
types, 76–77
transmissibility in monkey models, 3
treatment
anle138b, 603, 607–608
combination therapy, 609–610
compound B, 604, 606–607
doxycycline, 603–605
flupirtine, 601, 603
historical perspective, 599–601
IND24, 603, 607
IND81, 603, 607
pentosan polysulfate, 603–604

Chorea, 656. See also specific diseases
Chromogranin B, amyotrophic lateral sclerosis modifying gene, 394
Chronic traumatic encephalopathy (CTE), 657
blood–brain barrier disruption, 169
clinical presentation, 166–167
inflammatory response, 169–170
interstitial fluid clearing, 170
interventions, 171
latency and tau prion propagation, 168
neuropathology, 164–166
overview, 163–164
posttraumatic stress disorder association, 11
tau prion transmissibility, 11–12
traumatic injury cascade, 167–168
Chronic wasting disease (CWD), 657
cell culture models
prion quantification, 103–104
therapy studies, 103
economic impact, 98
epidemiology, 95–96
host range, 95–96
management, 98
mouse models, 99–100
pathogenesis, 96–97
prion propagation mechanisms
amino-terminus polymorphism effects, 100–101
β2–α2 loop interactions with α-helix 3, 101–102
prion strains, 104–105

© 2017 by Cold Spring Harbor Laboratory Press. All rights reserved.
preemptive intervention, 608
quinacrine, 601, 603–604
therapeutic targets, 605–606
variant disease, 665–666
clinical features, 84–85
diagnosis, 85–86
epidemiology, 84, 88–89
neuropathology, 86–88
transfusion transmission, 88
Crm1, 436–437
Cross-β motif, 260, 262–263, 265, 657
Cryo-electron microscopy, 218–219, 657
CSPα, 335
CTE. See Chronic traumatic encephalopathy
CWD. See Chronic wasting disease
CX3CR1, amyotrophic lateral sclerosis modifying gene, 393
CYP27A1, 391
Dbr1, therapeutic targeting, 437
DCTN1. See Dynactin
Dementia, 657. See also specific diseases
Dementia with Lewy bodies (DLB), 312–314, 657
Dextran sulfate 500 (DS500), 581
Diabetes type 2
epidemiology, 552
islet amyloid polypeptide aggregation, 554–556, 573–574
cross-seeding with other protein aggregates, 557–558
history of study, 552–553, 572
prion-like transmission, 556–557
prospects for study, 558
seeding, 573
structure, 553
Dipeptide repeat, 483, 485–490, 506–507
DLB. See Dementia with Lewy bodies
DMT1, amyotrophic lateral sclerosis modifying gene, 393–394
Down syndrome (DS), Alzheimer’s disease, 191, 204–205
Doxycycline, 603–605
DPP6, 391
DPR. See Dipeptide repeat
DS. See Down syndrome
DS500. See Dextran sulfate 500
Dynactin (DCTN1), amyotrophic lateral sclerosis genetics, 382–383

E
E2012, 230, 232
E2212, 230, 232
EGCG. See Epigallocatechin gallate
EGFR. See Epidermal growth factor receptor
eIF2α, 437–438
ELP3, 391
Ephrin A4, amyotrophic lateral sclerosis modifying gene, 392–393
Ephrin receptors, Aβ oligomer binding, 247–248, 252–253
Epidermal growth factor receptor (EGFR), Aβ oligomer binding, 250, 252–253
Epigallocatechin gallate (EGCG), 154
ESCRT, 335–336
Ewing’s sarcoma
breakpoint region 1, 428, 436
protein, 470–471
EWS. See Ewing’s sarcoma
EXPEDITION trials, 623–624

F
Fatal familial insomnia (FFI)
gene mutations, 6, 58
mouse models, 64–66
pathology, 58
prion strains, 46
Fatal insomnia, 2, 76, 79, 658
Fazio–Londe (FL) disease, 385
FcγRIIb, Aβ oligomer binding, 248, 252–253
FET proteins. See EWS; Fused in sarcoma; TAF15
FFI. See Fatal familial insomnia
FL disease. See Fazio–Londe (FL) disease
Fluorescence resonance energy transfer (FRET) presenilin complex studies, 220
tau proteopathic seeding studies, 130–131
Flupirtine, 601, 603
FRET. See Fluorescence resonance energy transfer
Frontotemporal dementia (FTD), 658. See also Frontotemporal lobar degeneration
Frontotemporal lobar degeneration (FTLD), 658
amyotrophic lateral sclerosis association, 354, 360, 405–406, 461, 477–478, 499–500
C9ORF72 repeat expansions
DPR in neuropathology, 485–490
overview, 478, 480–481
therapeutics and biomarkers, 490–491
diagnosis, 10–11
FUS disease
atypical FTLD-U, 465–466
neuropathological, 466–470
overview, 465
subtypes, 469
gene mutations, 12
neurofibrillary tangles, 12
tau
immunotherapy targeting, 627–629
pathology, 626–627
FTD. See Frontotemporal dementia
FTLD. See Frontotemporal lobar degeneration
FUS. See Fused in sarcoma
Fused in sarcoma (FUS), 658
amyotrophic lateral sclerosis defects
clinical presentation, 412–413, 461–463
genetics, 379–381, 385
mutation distribution and effect, 413
pathogenic mechanism, 413–414
pathological findings, 413, 463–465
basophilic inclusion body disease neuropathology, 469–469
frontotemporal lobar degeneration
atypical FTLD-U, 465–466
genetic analysis, 469–470
neuropathology, 466–467
overview, 465
subtypes, 469
neuronal intermediate filament inclusion disease
neuropathology, 466, 468, 470
prion activity studies, 417–418, 472
structure and function, 413, 462
FXN, 506

G
GADD34, 594
γ-Secretase. See also Presenilin complex inhibitors
active site-directed inhibitors, 221–222
Alzheimer's disease clinical trials, 222, 227–228
exosite-targeted inhibitors, 221
structures, 222–227
modulators
heterocyclic modulators, 230–233
nonsteroidal anti-inflammatory drug-derived modulators, 228–231
overview, 228
structures, 229–230
Gantenerumab, 624
GCI. See Glial cytoplasmic inclusions
Genome-wide association study (GWAS), 248–249, 347, 385–392, 659
Gerstmann–Sträussler–Scheinker disease (GSS), 659
gene mutations, 5–6, 58, 61
mouse models
A117V, 62–63
GPI-anchorless PrP, 63
9-OPRI, 63
overview, 61
P102L, 60, 62
Y145X, 63–64
GFAP. See Glial fibrillary acidic protein
Glial cytoplasmic inclusions (GCIs), 3–5, 13–14, 320–324, 327, 659
Glycophosphatidylinositol (GPI), 57–64, 243, 659
Glymphatic system, 164, 168, 170, 659
GN8, 592–593
GPL. See Glycophosphatidylinositol
GSK2606414, 438, 594
GSM-1, 229–230
GSM-2, 229–231
GSS. See Gerstmann–Sträussler–Scheinker disease
GWAS. See Genome-wide association study

H
HAP1, 522
HD. See Huntington's disease
HDAC6. See Histone deacetylase 6
Head trauma. See Chronic traumatic encephalopathy
Heat shock protein, 284, 336, 340, 438–448, 520, 543, 636–637, 641–645, 659. See also Tau
HGH. See Human growth hormone
High-throughput screening, prion disease therapeutics, 583–584, 592–593
Histone deacetylase 6 (HDAC6), 646
hnRNPA1, amyotrophic lateral sclerosis genetics, 381, 428, 436
hnRNPA2, amyotrophic lateral sclerosis genetics, 381, 428, 436
hnRNPA3, 428, 485, 506
HPA-23, 581
Human growth hormone (HGH), 81–84, 89, 659
Huntingtin, 659. See also Polyglutamine proteins
aggregates
aggregation, 518, 520
interactions with other aggregate-prone proteins, 525
transmission, 523–524
cleavage into toxic fragments, 520
function
development, 517
overview, 516–517
scaffolding, 517
synapse, 517–518
transcriptional regulation, 517
structure, 516
Huntington's disease (HD), 659–660
clinical features, 515–516
genetics, 515
pathogenesis
astrocyte and microglial dysfunction, 524–525
epigenetics and noncoding RNA, 521
huntingtin
aggregation, 518, 520
cleavage into toxic fragments, 520
interactions with other aggregate-prone proteins, 525
transcription dysregulation, 520
mitochondrial dysfunction, 523
synaptic plasticity alterations, 522–523

© 2017 by Cold Spring Harbor Laboratory Press. All rights reserved.
ubiquitin–proteasome system and autophagy, 521–522
prions and transmission, 17, 523–524, 541, 544–545
therapy
antioxidants, 526
antisense oligonucleotides, 526
autophagy upregulation, 526–527
caspase inhibitors, 526
clinical trials, 527
neuronal transplantation, 527
overview, 525–526
transglutaminase inhibitors, 526

I
IAPP. See Islet amyloid polypeptide
IDPs. See Intrinsically disordered proteins
IDRs. See Intrinsically disordered regions
IND24, 585, 588–589, 591–592, 603, 607
IND81, 585, 588–589, 591–592, 603, 607
IND125, 590
IND126, 590–591
IND28484, 587
IND114338, 590
IND116133, 587, 592
IND116135, 587, 592
IND162256, 587
Infectious unit, 608, 660
In silico screen, prion disease therapeutics, 593
Insulin receptor, Aβ oligomer binding, 250, 252–253
Interferon, 337–338, 660
Intrinsically disordered proteins (IDPs), 538
Intrinsically disordered regions (IDRs), 538
Islet amyloid polypeptide (IAPP), 660
aggregation, 554–556, 573–574
cross-seeding with other protein aggregates, 557–558, 573
function, 572
history of study, 552–553, 572
prion-like transmission, 556–557
prospects for study in diabetes, 558
seeding, 573
structure, 553
ISRIB, 438

J
JNJ-16, 230, 233
JNJ-42601572, 230, 232–233
JNK, 248, 522

K
KIF5, 522
Kuru, 580, 660
history of study, 81
neuropathology, 81–82
transmissibility in monkey models, 3

L
L-458, 221, 223–225
LAG3, 334
Latrepirdine, 527
Lewy body, 13–16, 279–280, 284, 288–289, 336, 344, 556, 660. See also Dementia with Lewy bodies
Lewy neurite, 284, 345, 660
LilrB2, Aβ oligomer binding, 249, 252–253
LINS001, 592–593
Low-complexity domain, 17, 409, 411, 417–418, 505, 660
LY411575, 594

M
Mad cow disease, 20, 660. See also Bovine spongiform encephalopathy
Magnetic resonance imaging (MRI), Creutzfeldt–Jakob disease
sporadic disease, 75, 77
variant disease, 86
MAPT. See Tau
Mass spectrometry (MS), 281, 660–661
Matrin-3, amyotrophic lateral sclerosis genetics, 382
Matrix metalloproteinases (MMPs), MMP9 as amyotrophic lateral sclerosis modifying gene, 393
MB. See Methylene blue
Memantine, 1
Methylene blue (MB), 153
MicroRNA, Huntington's disease, 521
MK-0752, 227
MMPs. See Matrix metalloproteinases
MND. See Motor neuron disease
Motor neuron disease (MND), 661. See also specific diseases
MRI. See Magnetic resonance imaging
MS. See Mass spectrometry
MSA. See Multiple system atrophy
Multiple system atrophy (MSA), 661
α-synuclein
aggregation modeling in vitro, 322–324
mitochondrial inclusion, 321–322
mutations, 2–3, 14–15, 348
neuropathology, 322
prion propagation in cell culture, 324–325
prion transmission in mice, 325–327
clinical features, 319–320
diagnosis, 321
genetics, 322
history of study, 320
mouse models, 322
prions, 13–15
transgenic mouse model, 2–3
transmissibility studies, 14, 53
Quinacrine, 50–51
Swainsonine, 51
Mixtures and consequences, 37–39
Overview, 31–32, 46–47
Properties, 34–36
Tropism, 32–34
PRNP, 2, 58, 663
Profilin-1 (PFN1), amyotrophic lateral sclerosis genetics, 383
Progranulin, 12, 250, 394, 663
Progressive supranuclear palsy (PSP), 11–12, 17, 138, 141, 635, 638, 663
Proteinase K, 11, 34, 47, 58, 77, 98, 113, 180, 313, 455, 580, 663
Protein misfolding cyclic amplification (PMCA), 34, 38–39, 86, 96, 100, 104–106, 592, 663
Proteostasis, 433, 439, 538, 644–646, 663
PrP, 663
Amyloid-β seed comparison, 183–184
copper binding, 6
disease types, 2, 18, 58
mutation sites, 59
prion structure, 116–122
PrP 27–30, 663
PrPSc, 553–554, 579–580, 663
PSEN1, 203, 215
PSEN2, 203, 215
PSP. See Progressive supranuclear palsy
PTSD. See Posttraumatic stress disorder
PU.1, 524
Q
Quinacrine, 50–51, 582–583, 601, 603–604
R
Rab11, 334
RAGE, Aβ oligomer binding, 243–245, 252–253
PrPSc, 553–554, 579–580, 663
PSEN1, 203, 215
PSEN2, 203, 215
PSP. See Progressive supranuclear palsy
PTSD. See Posttraumatic stress disorder
PU.1, 524
S
SARM1, 385, 391
SARs. See Structure—activity relationships
SCA. See Spinocerebellar ataxia
ScSn2a, 583–587, 590–591, 664
Scrapie, 37, 537, 664
Semagacestat, 222, 227
Shy–Drager syndrome, 320, 664
σ2 receptor/PGRMC1, Aβ oligomer binding, 251, 252–253
SIGMAR1, 384–385
SLC52A3, 385
Slow virus, 3, 664
SMN1, 391
SNARE, 335
SNP. See Single nucleotide polymorphism
SOD1. See Superoxide dismutase
Solanezumab, 622–623
SorLA, Aβ oligomer binding, 249, 252–253
Sortilin, Aβ oligomer binding, 250, 252–253
SP-53, 230, 232
SP-1865, 230, 233
Species barrier, 37, 48, 99, 120, 312, 664
SPG11, 384
Spinocerebellar ataxia (SCA), 437, 470, 540, 664
Spongiosis, 58, 63, 67, 77, 97, 138, 355, 664
Steric zipper, 436, 539, 543, 565, 664
Strain, 664. See also Prion strain
Structure—activity relationships (SARs)
2-aminothiazoles, 584–585
aryl amides, 586–588
aryl piperazines, 585–586
Sup35, 8, 155, 436
Superoxide dismutase (SOD1), 664
amyotrophic lateral sclerosis defects
clinical presentation, 406, 410
genetics, 370, 377
mutation distribution and effect, 410
mutations, 17, 355
pathogenic mechanism, 410
pathological findings, 410
prevalence, 406
prion activity studies
template-directed misfolding and spread, 416
transmission in vivo, 416–417
structure and function, 410
Swainsonine, prion strain resistance, 51
Synucleinopathy, 665. See also α-Synuclein
T
TAF15, 428, 436, 471
Tafamidis, 436
TARDBP, 360, 507
Tau, 665
cell internalization of proteopathic seeds, 128–130
frontotemporal lobar degeneration
immunotherapy targeting, 627–629
pathology, 626–627
heat shock proteins
Hsp27 and tau reduction, 645
Hsp70 modulators, 643
Hsp90

© 2017 by Cold Spring Harbor Laboratory Press. All rights reserved.
Tau

(Continued)

inhibitor studies of tau clearance, 644–645
stabilization, 643–644
stabilization of tau, 641–643
MAPT mutations, 12
neurofibrillary tangles, 9, 635–636
posttranslational modifications in disease, 150, 638–640
prion diseases
inherited tauopathies, 12–13
overview, 10–12, 137–139
transmissibility, 11–12
prion strains, 52, 133–134
protein–protein interactions
aberrant interactions, 636, 638
normal interactions, 636–637
proteopathic seeding, 130–132
reduction of levels
atophagy, 646
clusterin, 645
histone deacetylase 6, 646
Hsp27, 645
Pin1, 645
therapies, 646
small molecule studies
aggregation
agonists, 150–151
inhibitors, 152–154
reporters, 151–152
fibril remodeling, 154–155
positron emission tomography probes, 155–156
prospects, 157
structure and function, 636
therapeutic targeting, 640–641
transgenic mouse studies
aggregate formation, 143–144
prospects for study, 145
release of aggregates, 15
tau strains, 141–143
tauopathy induction and propagation, 139–141
uptake of aggregates, 143–145
transcellular propagation of aggregates, 132–133
Tauopathy, 665. See also specific diseases
TBI. See Traumatic brain injury
TBK1, amyotrophic lateral sclerosis modifying gene, 394
TDP-43, 665
amyotrophic lateral sclerosis defects
clinical presentation, 410–411
genetics, 355, 359, 429
mutation distribution and effect, 411–412
pathogenic mechanism, 412, 433–435
pathological findings, 412, 428
therapeutic targeting, 436–439
amyotrophic lateral sclerosis genetics, 379
misfolded protein reactivation, 438–439
nuclear transport modulation, 436–437
proteinopathy
neurotoxicity, 453
pathology, 452–453
prion activity studies, 417–418, 455
prion strains, 453–454
seeded aggregation in cell models, 454–455, 458
transmissibility studies, 455–457
stress granule targeting, 437–438
structure and function, 409, 411, 429–433, 452
suppressor targeting, 437
Tetrabenazine, 525
Thioflavin S (ThS), 151, 154
Thioflavin T (ThT), 150–152, 154
ThS. See Thioflavin S
ThT. See Thioflavin T
TMEM106B, amyotrophic lateral sclerosis modifying gene, 394
TNPO1, 472
Transglutaminase, inhibitors for Huntington’s disease, 526
Transmissible spongiform encephalopathy (TSE), 551–552, 665
Transmission barrier, 62, 98, 101, 106, 665
Transhyretin
amyloidosis
clinical features, 570–571
hereditary amyloidosis, 436, 570–571
transmission, 571–572
treatment, 571
wild-type protein amyloidogenicity, 570
structure and function, 569–570
Traumatic brain injury (TBI), 11, 169–170, 665. See also Chronic traumatic encephalopathy
TREM2, amyotrophic lateral sclerosis modifying gene, 394
TRN, 472
TSE. See Transmissible spongiform encephalopathy
TubulinA4A, amyotrophic lateral sclerosis genetics, 383–384

U

UBQLN1, 385
UNC13A, 385
Unc119, 489

V

Valosin-containing protein (VCP), 665, amyotrophic lateral sclerosis genetics, 378
Variably protease-sensitive prionopathy (VPSPr), 78–81
VCP. See Valosin-containing protein
VPSPr. See Variably protease-sensitive prionopathy

X

X-ray scattering, Aβ aggregates studies, 261–262