Index

A
ACT. See Adoptive cellular therapy
Activation-induced cytidine deaminase (AID), 38, 48, 56–57, 214, 218
Acute myeloid leukemia (AML), 392
ADCC. See Antibody-dependent cell-mediated cytotoxicity
ADCP. See Antibody-dependent cellular phagocytosis
ADE. See Antibody-dependent enhancement
Adoptive cellular therapy (ACT), 122
Affinity maturation
antibody affinity reversion/antibody redemption, 56–57
antibody feedback
affinity maturation effects, 31–32
B-cell receptor–antigen interactions, 30–31
Epitope-spreading role, 32–34
antigenic seniority, 41
diminishing returns, 38–40
founder effect as limitation, 40–41
human immunodeficiency virus response.
See Human immunodeficiency virus immunoglobulin gene mutability, 41–42
overview, 30, 38, 54
pertussis booster vaccination, 342–343
somatic hypermutation in germinal center B cells, 54–55
vaccine driven V(D)J hypermutation and selection, 55–56
AID. See Activation-induced cytidine deaminase
AML. See Acute myeloid leukemia
Animal models. See also specific animals
biomarker development, 294
coinfection effect on immune response, 293–294
controlled variability, 294
discrepancies with human infection improvements, 292–293
natural infection nonexistence, 291
overview, 290
pathophysiology differences, 291–292
preconditioning effect on immune response, 293–294
proof-of-concept studies, 260
selection of model, 292
vaccine effectiveness evaluation
anthrax, 261–262
ebola vaccine studies
bridging animal protection data to humans, 263–264
overview, 262
pathogen considerations, 262–263
surrogate markers, 263
human immunodeficiency virus studies in nonhuman primates
immune response measurement, 265
overview, 264–265
SHIV challenge models, 265–266
SIV challenge models, 265
vaccine design, 265
human papillomavirus, 261
overview of challenge models, 260–261
Animal Rule, 261, 267
Anthrax, vaccine studies in animals, 261–262
Antibody affinity maturation. See Affinity maturation
Antibody-dependent cell-mediated cytotoxicity (ADCC), 265
Antibody-dependent cellular phagocytosis (ADCP), 265
Antibody-dependent enhancement (ADE), 76, 87, 92, 104, 110
AP-1, 2
APRIL, 233
ATAC-seq, 5

B
Bacille Calmette–Guerin (BCG), 227
B-cell affinity maturation. See Affinity maturation
BCG. See Bacille Calmette–Guerin
Bcl6, 19, 24

C
Cancer vaccine
historical perspective, 128
neoantigens
cancer vaccine development, 115
checkpoint inhibitor therapy combination, 132
delivery, 125
ideal properties of vaccine, 129–130
overview, 114
prophylactic cancer vaccines, 117–118
rationale for vaccines, 128–129
selection for vaccine, 117, 123–124

413
Index

Cancer vaccine (Continued)
- T-cell response to vaccines
 - magnitude, 129–130
 - quality, 130–131
 - specificity, 131–132
- patient selection, 124–125
- tumor peptides, mutated versus nonmutated, 115–116

Candida albicans, T-cell response, 10–11, 13

CAR T cell. See Chimeric antigen receptor T cell

CCR5, 233, 280–281

CCR6, 23, 184

CD27, 219

CD4 T cell

- cell fate
 - determination, 2–3
 - fixation, 2–3
 - human studies, 12–13
 - lineage tracing, 5
- cytokines, 10
- Dengvaxia response, 84
- follicular helper T cell, 200, 202–203
- gut microbiota cross talk, 180, 191
- heterogeneity, 10–12
- pertussis immune response
 - infection, 332
 - vaccination
 - acellular boosting, 344–345
 - primary vaccination, 344–345
- plasticity
 - definition, 18
 - human studies, 12–13
 - intraclonal diversification, 13–15
 - phenotype heterogeneity and stability during
 - resting memory, 22–23
 - recall and plasticity during, 23–24
 - regulation, 3–5
 - single-cell studies, 5
 - stability during
 - primary response, 18–19
 - transition from effector to memory cell, 19–22
- subtypes, 18

CD8 T cell

- activating receptors, 409
- cytokine stimulation, 408–409
- functional overview, 298
- memory cell protection against reinfection, 298, 410
- subsets, 314–315

vaccine

- delivery, 300
- human immunodeficiency virus vaccine
 - cytomegalovirus-vectored vaccine, 306–309
 - prospects, 308–309
 - rationale, 304
- vaccination studies, 304–306
 - manufacturing, 300
 - prospects, 300–301
 - rationale, 298–299
 - safety, 299

Salmonella typhi vaccines, 315–316

- CD40L, 237
- CD73, 210–211
- CD80, 210–211, 219
- CD95, 390
- CD3, 40
- Chimeric antigen receptor (CAR) T cell, 131
- Chronic lymphocytic leukemia (CLL), 115
- CLL. See Chronic lymphocytic leukemia
- Clostridium difficile, 181–182, 190
- CMV. See Cytomegalovirus
- c-Myc, 3
- CRISPR-Cas9, 5, 255
- CTLA-4, 122, 386
- CXCL13, 18
- CXCR3, 18, 20, 24, 184
- CXCR5, 18–20, 22–24
- CXCR6, 384–385
- Cytomegalovirus (CMV), 246, 292
 - immunogen design, 372
 - natural killer cell memory, 381–383, 390–391, 393, 399–400
 - vector for human immunodeficiency virus
 - CD8 T-cell vaccine, 306–309

D

Dengue virus

- antibody response
 - primary infection, 71–72
 - secondary infection, 72–73, 75, 95
 - conformational quaternary epitopes, 107–109
 - epidemiology, 62, 70
 - fusion loop epitope, 107
 - immune response overview, 62–63, 71, 82–83
 - prM cleavage, 106–107
 - secondary infection, 62, 71, 104
 - serotype heterogeneity, 70–71
- vaccines
 - challenges, 106
 - Dengvaxia, 64–65, 74, 82, 84–85, 92–97, 104–106
 - enhanced disease after vaccination, 85–87, 92–97
 - historical perspective, 104
 - immune response, 82, 84
 - live attenuated vaccine, 64, 70, 73–74
 - naïve individual vaccination, 74, 76
 - National Institutes of Health LATV enhancement, 98
primed individual vaccination, 76
prospects, 77
safety, 64, 76–77, 105–106
serotypes, 64–65, 85, 94, 96
TDV, 97–98
virus breathing, 70–71, 107
zika infection interactions, 108, 110

E
Ebola, vaccine studies in animals
bridging animal protection data to humans, 263–264
overview, 262
pathogen considerations, 262–263
surrogate markers, 263
Enterotoxigenic Escherichia coli, 315
ERB-B2, 131–132
F
FDC. See Follicular dendritic cell
Fecal microbiome transfer (FMT), 181
FMT. See Fecal microbiome transfer
Follicular dendritic cell (FDC), 31, 48, 255
Follicular helper T cell, 200, 202–203
Foxp3, 24
G
GATA3, 24
GC. See Germinal center
GCN2, 235, 245
Germinal center (GC). See also Affinity maturation
antigen-specific B-cell memory, 198
follicular helper T cell, 200, 202–203
memory B cell
antibody suppression of cell fate, 211
formation, 208–209
functions, 209, 210
prospects for study, 211–212, 218–219
secondary germinal center formation
history of study, 214
human studies, 217–218
mouse studies, 214–217
pathogen studies, 217
somatic hypermutation, 218
memory-response germinal cell reaction, 198–199
single-cell level programs, 199–201
vaccine significance, 203
GN2, 245
gp100, 128
gp120, 282, 362
Guillain–Barré syndrome, 142
Gut microbiota

H
HA. See Hemagglutinin
HBV. See Hepatitis B virus
HCV. See Hepatitis C virus
Hemagglutinin (HA), 48, 138–139, 146–147, 151, 156–160, 164–169, 292
Hepatitis B virus (HBV), 130, 244
Hepatitis C virus (HCV), 130
HIV. See Human immunodeficiency virus
HPV. See Human papillomavirus
hTERT, 115
Human immunodeficiency virus (HIV)
antigenic variation and somatic hypermutation, 47–48
CD8 T-cell vaccine
cytomegalovirus vectored vaccine, 306–309
prospects, 308–309
rationale, 304
vaccination studies, 304–306
epitope loss, 131
immune perturbations, 56
immunogen design, 362–364, 372–374
natural killer cell memory, 382–383
somatic hypermutation and broadly neutralizing
antibody development, 46, 56, 183
vaccination
history, 222
nonhuman primate studies
immune response measurement, 265
overview, 264–265
SHIV challenge models, 265–266
SIV challenge models, 265
vaccine design, 265
somatic hypermutation load, 48–51
Human papillomavirus (HPV), 261
Malaria, memory B-cell studies in mice, 217
Marburg virus, 262–263
MART-1, 132
Memory. See Immunological memory; specific cells
Memory B cell. See Germinal center
Meningitis B vaccine, 371
Microbiota. See Gut microbiota
MMRN. See Multiscale multifactorial response network
Mouse models
dirty versus clean mouse studies, 275–276
human immune system comparison, 272–273
memory B-cell studies, 214–217
previous microbial exposure impact on immune response, 273–274
specific pathogen-free mice, 275–276
mTOR, 245
MUC1, 115, 117
Multiscale multifactorial response network (MMRN), 237

N
NA. See Neuraminidase
Narcolepsy, 142
Natural killer (NK) cell
activation states and cell maintenance, 409
cytokine stimulation, 408–409
functional overview, 378
memory
antigen-nonspecific memory-like natural killer cells, 379, 381–382
antigen-specific memory of highly diverse antigens, 382–383
bystander responses, 401
cancer targeting, 401
cytomegalovirus, 381–382, 390–391, 393, 399–400
experimental evidence, 380–381
forms of memory, 390–392
human immunodeficiency virus, 382–383
immunological memory, 378–379, 399–400
prospects for study, 384–386, 395, 409–411
subset expansion and functional memory, 407–408
vaccination role, 392–394, 400
vaccine utilization, 383–384
origins, 390–391
receptors in activation, 406–407
subsets, 378, 407–408
Neoantigen. See Cancer vaccine
Neuraminidase (NA), 138–139, 146, 151, 164
NF-κB. See Nuclear factor κB
NK cell. See Natural killer cell
NKG2C, 378, 390–391, 400, 407
NLRP3, 382
Nuclear factor κB (NF-κB), 2
Oct4, 3
Original antigenic sin, 40–41, 146–147, 150, 353
P
p53, 117
PAP. See Prostatic acid phosphatase
Parkinson’s disease (PD), 124
PD. See Parkinson’s disease
PD-1, 386
PD-L2, 210–211, 219
Pertussis
Bordetella pertussis evolution, 332–333
protection by natural infection, 324–325
vaccines
acellular versus whole vaccine, 327, 342
animal models, 329, 332
antigen composition of acellular vaccine, 342
booster vaccination and affinity maturation, 342–343
herd immunity, 332
historical perspective, 325
IgG4 response, 343–344
immune memory skewing by primary and booster vaccination, 345–346
immune responses, 327–331, 342–344
immunoglobulin class switching, 343–344
improvement of acellular vaccine, 333–335
overview, 324
priming failure by acellular vaccines
original antigenic sin, 353
overview, 350–353
postexposure immune memory reactivation failure, 353–354
prospects, 354–355
T-cell responses
acellular boosting, 344–345
primary vaccination, 344–345
waning immunity, 325–327
Plaque-reduction neutralization test (PRNT), 84, 87
Polio vaccine, gut microbiota and efficacy, 174
PRNT. See Plaque-reduction neutralization test
Proof-of-concept studies, 260
Prostatic acid phosphatase (PAP), 128

R
RAG, 378, 392, 399
Rel, 2

© 2018 by Cold Spring Harbor Laboratory Press. All rights reserved.
Index

Relb, 2
Respiratory syncytial virus (RSV), immunogen design, 360–361, 372
RSV. See Respiratory syncytial virus

S
Salmonella typhi, CD8 T-cell vaccine, 315–316
SHIV. See Human immunodeficiency virus; Simian immunodeficiency virus
SHM. See Somatic hypermutation
Simian immunodeficiency virus (SIV)
 CD8 T-cell vaccine, 304–305, 307–308
 human immunodeficiency virus studies in nonhuman primates
 SHIV challenge models, 265–266
 SIV challenge models, 265
humoral immunity, 32
natural killer cell memory, 400
rhesus macaque challenge studies, 280–286
T-cell response, 19
SIV. See Simian immunodeficiency virus
SLE. See Systemic lupus erythematosus
Somatic hypermutation (SHM), 46–51, 54–56, 183, 214, 216, 218
Sox2, 3
Specific pathogen-free (SPF) mice, 275–276
SPF mice. See Specific pathogen-free mice
SREBP-1, 237
STAT1, 232
STAT4, 408
Systemic lupus erythematosus (SLE), 56
Systems vaccinology
 adjuvant profiling in animals, 242–243
 age effects, 243–244
 cell phenotyping, 226
 challenges, 255–256
 chronic infection studies, 246
 correlates of infection, 246–247
cytokine studies, 222, 225–226
examples, 227
functional assays, 226
gut microbiota effect studies, 245
history of human studies, 243–244
immune response predictors
 identification, 234, 236–237
 robustness, 237–238
influenza studies, 224–227
lymphocyte repertoire analysis, 226
metabolomics, 245
misunderstandings, 252–255
overview, 222–223, 232, 242, 252–253
prospects, 227–228, 238
techniques, 222–226
transcriptomics, 222, 237
vaccine efficacy signatures, 232–234

T
T helper cell. See CD4 T cell
TLR4, 243
TLR5, 233, 245
TLR9, 243
TNF-α. See Tumor necrosis factor α
Tuberculosis, T-cell response, 11
Tumor necrosis factor α (TNF-α), 82, 316

V
Vesicular stomatitis virus (VSV), natural killer cell memory, 382–383, 392
VSV. See Vesicular stomatitis virus

Z
Zika virus
dengue infection interactions, 108, 110
nonhuman primate challenge studies, 285