Index

A
Acute kidney injury (AKI)
 animal models, 112
 causes, 112
 immune cell roles, 112–113
 inflammation and neuroimmune interactions
 cholinergic anti-inflammatory pathway
 macrophages, 114
 overview, 114
 spleen role, 114–115
 T cells, 114
 ultrasound activation and kidney protection, 115–116
 vagus nerve stimulation activation and kidney protection, 117
 overview, 113–114
 overview, 111–112
 pharmacological therapy, 113
 vagus nerve stimulation
 optogenetics
 C1 neuron stimulation, 119–120
 devices, 118–119
 overview, 117–118
AE. See Atrial fibrillation
AKI. See Acute kidney injury
ALS. See Amyotrophic lateral sclerosis
Amyloid fibrils
 nicotinic acetylcholine receptor binding, 125, 135–137
 small heat shock protein amyloid fibrils
 endocytosis and migration to secondary lymph organs, 131
 formation for therapeutic activity, 129–131
 gene expression modulation, 134–135
 knockout mouse studies, 131–134
Amyotrophic lateral sclerosis (ALS), 279, 283–284, 306
Aptasensor, electrophotonic diagnostics, 270
Artificial pancreas. See Diabetes
Atherosclerosis
 inflammation resolution failure, 194
 pathogenesis, 193–194
Atrial fibrillation (AF), vagus nerve stimulation studies, 165–166

B
BCI. See Brain–computer interface
Bioelectronic neural bypass, movement restoration
 brain–computer interface, 305–307
 chronic neural recordings, 311–312
 feature selection and extraction, 312
 muscle contraction level control, 309–311
 neural decoding algorithms, 312–313
 prospects, 313–314
 rhythmic movement decoding, 307–309
Bipolar electrode (BPE)
 closed bipolar electrodes
 molecular biomarker detection
 assays, 272–273
 prospects, 273–275
 overview, 264–265
 optical readout strategies, 265–266
 principles, 264–265
 BPE. See Bipolar electrode
 Brain–computer interface (BCI), 305–307, 335

C
CAN. See Central autonomic network
CAP. See Cholinergic anti-inflammatory pathway;
 Compound action potential
Cardiac arrest, vagus nerve stimulation in resuscitation studies, 160–162
Cardiac ischemia–reperfusion injury, small heat shock protein studies, 127
Central autonomic network (CAN), brain–gut interactions, 225
Central pattern generator (CPG), 307–308
CGM. See Continuous glucose monitoring
Cholinergic anti-inflammatory pathway (CAP)
 acute kidney injury studies
 ultrasound activation and kidney protection, 115–116
 vagus nerve stimulation activation and kidney protection, 117
 macrophages, 114
 overview, 114
 spleen role, 114–115
 T cells, 114
 ultrasound peripheral nerve stimulation, 145–146, 149
Chronic intestinal pseudo-obstruction (CIPO)
electrical stimulation therapy
 clinical trials, 255
 dual-pulse stimulation, 250
 electrode types, 251
 inferential current stimulation, 250–251
 multichannel stimulation, 250
 parameters
 amplitude/intensity, 249
 duty cycle, 249
 frequency, 249
Index

Chronic intestinal pseudo-obstruction (CIPO) (Continued)
 pulse-width, 249–250
 waveform, 249
synchroized stimulation, 250
 targets, 248–249
 overview, 255
CIPO. See Chronic intestinal pseudo-obstruction
CLN. See Closed-loop neuromodulation
Closed bipolar electrode. See Bipolar electrode
Closed-loop neuromodulation (CLN)
 Components
 acquisition system, 99
 output device, 101
 processing unit, 99–101
 sensors, 97–99
 conditions for use, 96–97
 cortical stimulation for neuroplasticity induction, 101–103
 hemodynamic function control with closed-loop vagus nerve stimulation, 104
 Parkinson’s disease treatment, 103
 prospects, 104–106
 rationale
 adaptive neuromodulation, 95–96
 responsiveness, 94–95
Coagulopathy, vagus nerve stimulation studies, 168
Compound action potential (CAP), vagus nerve, 80–85
Constipation
electrical stimulation therapy
 colonic electrical stimulation, 256
dual-pulse stimulation, 250
electroacupuncture, 256–257
electrode types, 251
 inferential current stimulation, 250–251
 multichannel stimulation, 250
 parameters
 amplitude/intensity, 249
duty cycle, 249
 frequency, 249
 pulse-width, 249–250
 waveform, 249
 sacral nerve stimulation, 256
 slow transit constipation, 256
synchronized stimulation, 250
 targets, 248–249
tibial nerve stimulation, 256
transcutaneous electrical stimulation, 257
 overview, 255–256
Continuous glucose monitoring (CGM), 323–324
Continuous subcutaneous insulin infusion (CSII), 321
 CPG. See Central pattern generator
CRISPR, optogenetics, 48–50, 54
CSII. See Continuous subcutaneous insulin infusion

Parkinson’s disease closed-loop neuromodulation, 103
Depression, enteric nervous system modulation for treatment, 239
Designer receptors exclusively activated by designer drugs (DREADDs), 30–31
Diabetes
 artificial pancreas
 historical perspective, 324
 inpatient studies, 324
 outpatient non-mobile units, 325
 prospects, 327–328
 system integration, 324–325
 wearable units, 325–327
 economic impact, 318
 enteric nervous system modulation, 239
 glucose monitoring and risk analysis, 321, 323–324
 glucose-insulin control network, 318–320
 hepatic ultrasound effects in animal models, 149–151
 insulin therapies, 320–321
 optogenetics devices, 46–47, 51–53
 overview, 317–318
 timeline of technology development, 322
Disuse atrophy, 285
DMD. See Duchenne muscular dystrophy
DREADDs. See Designer receptors exclusively activated by designer drugs
Duchenne muscular dystrophy (DMD), 279, 283–285

E
EAE. See Experimental autoimmune encephalitis
EIG. See Electrical impedance myography
EIT. See Electrical impedance tomography
Electrical impedance myography (EIG)
 amyotrophic lateral sclerosis, 283–284
 applications, 282–283
 diagnostics, 283
 disuse atrophy, 285
 Duchenne muscular dystrophy, 283–285
electrodes, 282
 facioscapulohumeral muscular dystrophy, 285
 muscle injury, 285–286
 myotonic dystrophy, 285
 needle impedance electromyography, 286–287
 principles, 281–282
 prospects, 287
 sarcopenia, 285
 spinal muscular atrophy, 283
 virtual muscle biopsy, 286
Electrical impedance tomography (EIT), muscle impedance imaging, 286
Electroacupuncture, constipation, 256–257
Electrochemical zero-mode waveguide (E-ZMW), 267
Electromagnetic devices
 cell activity control, 63
 clinical prospects, 71–73
 genetically encoded particles, 68–71

© 2019 by Cold Spring Harbor Laboratory Press. All rights reserved.
magnetic nanoparticles
aggregation to activate cell signaling, 66
mechanical stimulation, 63–66
thermal effects, 66–68
Electromyography (EMG)
noodle impedance electromyography, 286–287
overview, 280
EMG. See Electromyography
ENS. See Enteric nervous system
Enteric nervous system (ENS)
indications for modulation
functional gastrointestinal disorder, 238–239
metabolic disorders, 239
psychiatric and mood disorders, 239–240
overview, 237–238
prospects for study
connectome unraveling, 242
ingestible devices, 243
moving target interfaces, 242–243
targets for modulation
direct organ stimulation, 240–242
extrinsic nervous system, 240
intrinsic nervous system, 240
Epilepsy
overview, 176
treatment, 176–177
vagus nerve stimulation
animal studies, 177
clinical trials, 177–179
parameters
amplitude, 179–180
closed-loop stimulation, 180–181
duty cycle, 180
frequency, 180
pulse width, 179–180
prospects, 181
Ethics, bioelectronic medicine
academic–industry relationships, 339–341
deep brain stimulation for Parkinson’s disease, 336
informed consent, 334–335
innovation, 337–339
intellectual property, 341
research ethics, 336–337
theories, 333–334
Experimental autoimmune encephalitis (EAE)
nicotine therapy, 135–136
small heat shock protein studies
amyloid fibril formation for therapeutic activity, 129–131
history of study, 126–127
knockout mouse studies, 131–134
E-ZMW. See Electrochemical zero-mode waveguide

F
Facioscapulohumeral muscular dystrophy
(FSHD), 283, 285
FD. See Functional dyspepsia
FSHD. See Facioscapulohumeral muscular dystrophy
Functional dyspepsia (FD)
electrical stimulation therapy
clinical trials, 253–254
dual-pulse stimulation, 250
electrode types, 251
inferential current stimulation, 250–251
multichannel stimulation, 250
parameters
amplitude/intensity, 249
duty cycle, 249
frequency, 249
pulse-width, 249–250
waveform, 249
synchronized stimulation, 250
targets, 248–249
enteric nervous system modulation, 238
G
Gastroesophageal reflux disease (GERD)
electrical stimulation therapy
clinical trials, 252–253
dual-pulse stimulation, 250
electrode types, 251
inferential current stimulation, 250–251
multichannel stimulation, 250
parameters
amplitude/intensity, 249
duty cycle, 249
frequency, 249
pulse-width, 249–250
waveform, 249
synchronized stimulation, 250
targets, 248–249, 252
overview, 252
Gastrointestinal motility
disorders. See specific diseases
electrical stimulation targets, 248–249
physiology, 248
Gastroparesis
electrical stimulation therapy
dual-pulse stimulation, 250, 253
electrode types, 251
gastric slow wave alteration, 253
inferential current stimulation, 250–251
multichannel stimulation, 250
nausea and vomiting treatment, 253
parameters
amplitude/intensity, 249
duty cycle, 249
frequency, 249
pulse-width, 249–250
waveform, 249
spinal cord stimulation, 253
synchronized stimulation, 250
targets, 248–249
vagus nerve stimulation, 230–231
GERD. See Gastroesophageal reflux disease
GTS-21, 117
Index

H
Heart failure (HF)
overview, 181–182
vagus nerve stimulation
animal studies, 162–163, 182–184
clinical trials, 184–186
prospects, 186
Heart rate variability (HRV)
inflammatory bowel disease, 223
inflammatory reflex biomarker, 208
irritable bowel syndrome, 223
Heat shock proteins. See Small heat shock proteins
Heme oxygenase-1 (HO-1), 117
Hemorrhagic shock, vagus nerve stimulation studies, 168
HF. See Heart failure
HO-1. See Heme oxygenase-1
HRV. See Heart rate variability
Hypertension, vagus nerve stimulation studies, 168–169

I
IBD. See Inflammatory bowel disease
IBS. See Irritable bowel syndrome
ICG. See Impedance cardiography
Impedance cardiography (ICG), 281
Inflammation. See also Cholinergic anti-inflammatory pathway; Inflammatory reflex
neural control
B-cell function, 197–198
inflammatory reflex, 194–197
neural circuits, 197
resolution of inflammation, 198
therapeutic targeting, 198–199
neuroimmune interactions in acute kidney injury, 113–114
overview of response, 190–191
resolution
failure in inflammatory disease, 194
specialized pro-resolving mediators, 191–192
ultrasound peripheral nerve stimulation. See Ultrasound
Inflammatory bowel disease (IBD)
brain–gut interaction defects, 227
economic impact, 222
inflammation resolution failure, 194
pathogenesis, 192–193
treatment, 189–190
vagus nerve stimulation, 5, 8–9, 198–199, 227–229
Inflammatory reflex
biomarkers of activation, 207–208
brain signaling, 7
overview, 194–197, 205–207
vagus nerve role, 3–6
vagus nerve stimulation
clinical trials, 215–216
electrode architecture, 211–213
microstimulator development, 213–215
parameters
duty cycle, 211
output current, 208–210
pulse width, 210
stimulation location, 211–213
Irritable bowel syndrome (IBS)
brain–gut interaction defects, 227
enteric nervous system modulation, 229, 238

K
Kidney injury. See Acute kidney injury

L
Lateral flow assay (LFA), point-of-care devices, 269
LFA. See Lateral flow assay
Localized surface plasmon resonance (LSMRP)
aptasensors, 270
construction, 266
principles, 266
selectivity, 266–267
siderophore-based devices, 271–272
LSMRP. See Localized surface plasmon resonance

M
Magnetic nanoparticles. See Electromagnetic devices; Magnetoelectric nanoparticle
Magnetic resonance imaging (MRI), magnetoelectric nanoparticles, 292–293, 300–301
Magnetoelectric nanoparticle (MENP)
imaging, 300–301
prospects, 301–302
single-neuron stimulation, 296–298
targeted drug delivery
blood–brain barrier release, 298
high-specificity intracellular targeted delivery, 298–300
traditional magnetic nanoparticle distinction, 293–296
MENP. See Magnetoelectric nanoparticle
MI. See Myocardial infarction
MRI. See Magnetic resonance imaging
Myocardial infarction (MI), vagus nerve stimulation studies, 163–165
Myotonic dystrophy, 285

N
NEMOS device, 231
Neurochip BCI, 101
NF-κB. See Nuclear factor κB
Nicotine, experimental autoimmune encephalitis
treatment, 135–136
Nicotinic acetylcholine receptor
amyloid fibril binding, 125, 135–137
inflammatory reflex, 195
Nuclear factor κB (NF-κB), 3, 5, 126–127

© 2019 by Cold Spring Harbor Laboratory Press. All rights reserved.
O

Obesity

- electrical stimulation therapy
 - clinical trials, 254–255
 - dual-pulse stimulation, 250
 - electrode types, 251
 - inferential current stimulation, 250–251
 - multichannel stimulation, 250
- parameters
 - amplitude/intensity, 249
 - duty cycle, 249
 - frequency, 249
 - pulse-width, 249–250
 - waveform, 249
- synchronized stimulation, 250
- targets, 248–249
- vagus nerve stimulation, 230
- enteric nervous system modulation, 239
- overview, 254

Optogenetics

- devices
 - cardiovascular disease, 44–46
 - diabetes, 46–47
 - gene activation, 50
 - gene editing, 48–50
 - mind-controlled transgene expression, 51
 - oncotherapy, 43–44
 - prospects, 53–54
- smartphone device for diabetes, 51–53
- overview, 19–22, 37–38, 61–62
- peripheral nervous system control
 - awake animal studies, 29–30
 - breathing, 25–27
 - divergent vagal neuron populations, 23–25
 - gastrointestinal function, 27–29
 - overview, 19–22
 - prospects, 30–31
 - receptors, 38–43
- vagus nerve stimulation and acute kidney injury protection
 - C1 neuron stimulation, 119–120
- devices, 118–119

P

Parkinson’s disease (PD), closed-loop neuromodulation, 103
PD. See Parkinson’s disease
Peripheral nervous system (PNS). See also Vagus nerve dysregulation in disease, 18
- neurotransmitters and neuropeptides, 19
- optogenetic control
 - awake animal studies, 29–30
 - breathing, 25–27
 - divergent vagal neuron populations, 23–25
 - gastrointestinal function, 27–29
 - overview, 19–22

PNS. See Peripheral nervous system
Point-of-care devices, diagnostics, 268–269
Postoperative ileus, vagus nerve stimulation, 229–230

R

RA. See Rheumatoid arthritis
Retinal ischemia, small heat shock protein studies, 127
RF BION, 213–214
Rheumatoid arthritis (RA)
 - inflammation resolution failure, 194
 - pathogenesis, 193
 - treatment, 189–190
 - vagus nerve stimulation, 199

S

Sacral nerve, stimulation for constipation, 256
Sarcopenia, 285
SCI. See Spinal cord injury
Shock. See Hemorrhagic shock
Siderophore, electrophotonic diagnostics, 270–272
Sjögren’s syndrome, vagus nerve stimulation, 10
SMA. See Spinal muscular atrophy
Small heat shock proteins
 - amyloid fibrils
 - endocytosis and migration to secondary lymph organs, 131
 - formation for therapeutic activity, 129–131
 - gene expression modulation, 134–135
 - knockout mouse studies, 131–134
 - experimental autoimmune encephalitis
 - amyloid fibril formation for therapeutic activity, 129–131
 - history of study, 126–127
 - knockout mouse studies, 131–134
 - receptors, 135–137
 - structure–activity relationships, 128–129
 - therapeutic studies in animal models
 - cardiac ischemia–reperfusion injury, 127
 - retinal ischemia, 127
 - stroke, 127–128
Spinal cord injury (SCI), bioelectronic neural bypass, 306
Spinal muscular atrophy (SMA), 283
Stroke
 - bioelectronic neural bypass, 306
 - small heat shock protein studies, 127–128
 - vagus nerve stimulation studies, 166–167
Support vector regression (SVR), 310
Surface plasmon resonance. SeeLocalized surface plasmon resonance
SVR. See Support vector regression

T

TENS. See Transcutaneous electrical nerve stimulation
Tibial nerve, stimulation for constipation, 256
TMS. See Transcranial magnetic stimulation
Index

Transcranial magnetic stimulation (TMS), 63, 72, 335
Transcutaneous electrical nerve stimulation (TENS), 143, 257
TREK-1, 64
TRPV1, 65, 67, 69–71, 84
TRPV4, 65, 69–71

U
Ultrasound
cholinergic anti-inflammatory pathway activation and kidney protection, 115–116
peripheral nerve stimulation
cholinergic anti-inflammatory pathway, 145–146, 149
hepatic stimulation in metabolism and diabetes models, 149
hepatic ultrasound comparison with implant-based stimulation, 151–152
lipopolysaccharide-induced inflammation model, 145
overview, 143–147
prospects, 152–153
splenic stimulation and inflammation, 147–149

V
Vagus nerve (VN)
afferents in neuroimmune dialogue, 6
anatomy, 3, 23–25
inflammatory reflex role, 3–6
optogenetic control
awake animal studies, 29–30
breathing, 25–27
divergent vagal neuron populations, 23–25
gastrointestinal function, 27–29
overview, 19–22
signal interpretation
inflammation-related signals, 79–84
metabolic state-related signals, 84–85
overview, 77–79
prospects for study, 88–89
respiration and blood pressure biomarkers, 86–88
sympathovagal balance, 222–223
Vagus nerve stimulation (VNS)
acute kidney injury protection
cholinergic anti-inflammatory pathway activation, 117–118

opigenetics
C1 neuron stimulation, 119–120
devices, 118–119
animal models of inflammatory diseases, 7–9
anti-inflammatory mechanisms, 226–227
atrial fibrillation studies, 165–166
cardiac arrest resuscitation studies, 160–162
cogulopathy studies, 168
devices, 116–117
gastroparesis, 230–231
heart failure studies, 162–163
hemodynamic function control with closed-loop nerve stimulation, 104
hemorrhagic shock studies, 168
hepatic ultrasound comparison with implant-based stimulation, 151–152
historical perspective, 1–3, 18, 157–160
hypertension studies, 168–169
inflammatory bowel disease, 5, 8–9, 198–199, 227–229
inflammatory reflex induction clinical trials, 215–216
electrode architecture, 211–213
microstimulator development, 213–215
parameters
duty cycle, 211
output current, 208–210
pulse width, 210
stimulation location, 211–213
invasive versus noninvasive, 231
irritable bowel syndrome, 229
myocardial infarction studies, 163–165
neuromodulation, 141–143
obesity, 230
postoperative ileus, 229–230
prospects
applications, 10–11
gastrointestinal disorder treatment, 231–232
side effects, 169–170
stroke studies, 166–167
technical challenges, 143
therapeutic applications, 9–10
tumor necrosis factor response, 196
ultrasound. See Ultrasound
rheumatoid arthritis, 199
inflammatory bowel disease, 5, 8–9, 198–199
VN. See Vagus nerve
VNS. See Vagus nerve stimulation

© 2019 by Cold Spring Harbor Laboratory Press. All rights reserved.