Index

A
ANOV A, 68, 81, 85
Anscomb’s quartet, 72–73
Array, 98
Assignment, coding, 97

B
Bit depth, imaging data, 23

C
CCA. See Connected component analysis
CI. See Confidence interval
Coding
array, 98
assignment, 97
benefits, 92
command line mastering, 92–96
debugging, 112–113
getting started, 91, 96–97
help resources, 113–114
ImageJ macro
 all files in a directory, 102–106
 creation, 101–102
loop, 98–101
modular code, 115
operator, 101
principles, 91–92
readability improvement, 114–115
script for automated image analysis, 106–109
sharing code, 117–118
string, 97
validation, 109–112
variable, 97
vector, 98
version control, 115–117
Command line. See Coding
Confidence interval (CI), 70
Connected component analysis (CCA), 40
Contrast stretching, images, 31
Convolution, images, 42–43

D
Data organization
 backup, 16–17
databases for resources, 11
electronic lab notebook, 12–14
Excel, 3
 experiment-based organization, 8–10
 sharing, 16
Digital object identifier (DOI), 115–116
DOI. See Digital object identifier
Downsampling, images, 29
Drift, images, 33–34
Dunnett’s test, 81–82
Dunn–Holland–Wolfe test, 84
Dynamic range, imaging, 35

E
Effect size, 88–89
Electronic lab notebook (ELN), 12–14
ELN. See Electronic lab notebook
Error types, 66
Excel
 advantages and disadvantages, 2–3
 data organization for digital cell, 3

F
False discovery rate (FDR), 87
FDR. See False discovery rate
Figures
 best practice, 122–123
 color blindness concerns, 125
 contrast adjustment, 125–126
cropping, 126
Figures (Continued)
 examples, 124
 formats, 123, 125
 movie files, 127
 scale bars, 126–127
 sizing, 123, 125
 unacceptable manipulation, 127–128
Fiji. See ImageJ
Filters, images, 42–44
Fluorophore, selection for imaging, 34–35
Focus, images, 33–34
Forking, code, 117

G
Gamma, images, 32
Gaussian function, 69
Gel densitometry, 44–47
git, 115–116
GitHub, 116–118
Golden rules
 coding, 118
 data organization, 17
 digital cell biologists, 4–5
 experimental design, 65
 figure generation, 128
 image analysis, 59
 imaging, 36
 statistical analysis, 89

H
Hyperstack, image, 26

I
IDR. See Image Data Resource
Image analysis
 automation, 57–58, 106–109
 cell protein quantification, 38–39
 filters, 42–44
 gel densitometry, 44–47
 movies
 kymographs, 51–53
 overview, 48
 particle tracking, 48–51
 subcellular localization, 53–57
 vesicle counting tutorial, 48
 overview, 37–38
 segmentation, 40–42
 validation, 58
Image Data Resource (IDR), 16
ImageJ, 20, 24, 101–106
Imaging data
 databases, 13, 15–16
 features, 21–23
 formats, 24
 image criteria and trade-offs, 33
 information content, 32–33
 metadata, 27–28
 multidimensional files, 25–26
 processing. See Image analysis software, 19–21
 transformation, 29–32
 types in Fiji, 24–25
Interquartile range (IQR), 68, 70, 86
Inversion, images, 29, 31
IQR. See Interquartile range

K
Kolomogorov–Smirnov test, 79
Kruskal–Wallis test, 68, 83
Kymograph
 generation, 51–52
 manipulation, 52–53
 overview, 51

L
Linear regression, 68
Logistic regression, 68
Loop, 98–101

M
Macro. See Coding
MAD. See Median absolute deviation
Manders’ coefficient, 54–55
Mann–Whitney test, 68, 78
Mean, 68, 70
Median, 68, 70
Median absolute deviation (MAD), 70
Movie
 files for publication, 127
 kymograph, 51–53
 overview, 48
 particle tracking, 48–51
 subcellular localization, 53–57
 vesicle counting tutorial, 48
Index

N
n, 62–65
Nonparametric regression, 68
Normalization, data, 85–87
Null hypothesis, 66

O
OME. See Open Microscopy Environment
OMERO. See Open Microscopy Environment Remote Objects
Open Microscopy Environment (OME), 13
Open Microscopy Environment Remote Objects (OMERO), 13, 15–16, 28, 122
Operator, 101

P
Particle tracking, 48–51
PCC. See Pearson’s correlation coefficient
Pearson’s correlation coefficient (PCC), 54–55, 68
Photobleaching, 34
Phototoxicity, 34
Pipeline, digital cell, 1–2
Plotting, data, 71–75, 119–122
Power analysis, 65–67
p-value
 effect size, 88–89
 overview, 87
 statistically significant versus biologically significant, 87–88

Q
QQ plot. See Quantile–quantile plot
Quantile–quantile (QQ) plot, 72, 75, 79

R
R. See Coding
Range, 70
Region of interest (ROI), 37–38, 41, 47–48, 126
ROI. See Region of interest
Rstudio, 20–21

S
Scale bar, figure, 126–127
Segmentation, images, 40–42

SEM. See Standard error of the mean
Software. See also specific programs
 imaging data, 19–21
 overview, 4
 table, 129
Spearman’s rank correlation coefficient (SRCC), 54–56, 68
SRCC. See Spearman’s rank correlation coefficient
Standard deviation, 68, 70
Standard error of the mean (SEM), 70
Statistics
 comparison testing
 complicated experimental designs, 85
 one group to a value, 76
 three or more groups, 81–84
 two groups, 76–81
data normalization and standardization, 85–87
 effect size, 88–89
 experimental design, 61–62
n, 62–65
plotting data, 71–75
power analysis, 65–67
p-value, 87–89
recommended tests by data types, 67–69, 71
statistically significant versus biologically significant, 87–88
summary statistics, 70–71
String, 97
Subcellular localization, 53–57

T
t-test, 68, 76–78, 83
Tukey’s HSD test, 82

V
Variable, 97
Vector, 98

W
Western blot, gel densitometry, 44–47
Wilcoxon test, 68, 78
Workflow
 coding, 91–92
digital cell, 1–2

© 2020 by Cold Spring Harbor Laboratory Press. All rights reserved.