Index

A
A-192558, 721
A-315675, 721
ACM. See Antigen clearance model
Acute respiratory distress syndrome (ARDS), 249, 552
Aging
CD8 T-cell response, 566–567
influenza susceptibility and severity, 248–250, 285–287
Amantadine, H7N9 resistance, 375
ANT3, 555
Antigen clearance model (ACM), 586–589
Antigenic distance hypothesis, 652
Antigenic drift, evolution, 211, 213
Antiviral therapy. See also specific drugs
antibodies, 690–695, 725–727
combination therapy, 695–696
hemagglutinin inhibitors, 688–690
host-directed therapies, 696–697
neuraminidase inhibitors, 685–688, 717–728
overview, 679–680
polymerase inhibitors, 680–684, 707–713
prospects, 700–701
study design for hospitalized influenza patients
end points, 697–699
populations, 699
type of study, 700
AP-1, 145, 553, 617
ARDS. See Acute respiratory distress syndrome
Aspirin, NF-κB inhibition, 142
Asthma, influenza susceptibility and severity, 287–288
ATF-2, 140, 145
Avian influenza viruses. See also specific viruses
clinical manifestations of human infection, 321–322
epidemiology of human infection
H5N1, 314, 317
H5N6, 315
H7N7, 315
H7N9, 315, 317
H7N4, 315
H9N2, 315
H10N7, 317
H10N8, 317
evolution
H5N6, 321
H7N9
high-pathogenicity viruses, 319, 321
low-pathogenicity viruses, 319
emerging viruses, 334–336
H5N1 in Egypt. See H5N1
H7N9 in China. See H7N9
high-pathogenicity viruses
documented outbreaks, epidemics, and pandemics, 421–426
emergence mechanisms, 420, 427–428
genetic lineages associated with outbreaks, 428–435
historical perspective, 419–420
prospects for study, 435–436
molecular markers of human pathogens, 318–320
overview, 313–314
prospects for study, 324
reassortment, 207–208, 359
receptor-binding profiles of human pathogens, 317–318
severe infection
cytokine storm, 323
susceptibility
host factors, 323–324
viral factors, 322–323
spillover into dogs and cats, 488–489
tissue tropism, 323–324
B
Baloxavir acid (BXA), 20
Baloxavir marboxil
efficacy, 681–682, 712
mechanism of action, 711
overview, 680–681, 710–711
resistance, 682, 712
safety, 682
Bat influenza A viruses
evolution, 498–500
H18N11
Bat influenza A viruses (Continued)
 replication efficiency, 503–504
 replication without N11, 501–502
 zoonotic risk, 505–506
 hemagglutinin and MHC class II molecules, 500–501
 NA protein counteracting HA function, 502–503
 overview, 497–498
 prospects for study, 506
 B cell
 immunization response. See Vaccination
 influenza immune response, 561–564
 recall antibody studies after infection
 animal models, 531–532
 humans, 529–530, 583–584
 BiFC. See Bimolecular fluorescent complementation
 Bimolecular fluorescent complementation
 (BiFC), 165–166
 BXA. See Baloxavir acid

C
 Canine influenza viruses
 avian influenza virus spillover, 488–489
 H3N2, 485–487
 H3N8, 484–485
 human influenza virus spillover, 487–488
 overview, 483
 pathogenesis, 487
 CCL4, 552
 CD25, 268
 CD55, 255, 324
 CF. See Cystic fibrosis
 cGAS, 599
 Children. See Pediatric influenza
 Chronic obstructive pulmonary disease
 (COPD), 252, 288
 CLIP-Seq, 167–168
 CLUH, nuclear export role, 130
 CMTR1, cap snatching role, 120
 CMV. See Cytomegalovirus
 COPD. See Chronic obstructive pulmonary disease
 CPSF30, 553
 CR6261
 efficacy, 693
 mechanism of action, 693
 CR8020
 efficacy, 693–694
 mechanism of action, 693
 CRISPR–Cas9, 124, 127, 156, 161–163
 CRM1, nuclear export role, 129–130, 144
 CRTAM, 558
 CT-P27
 efficacy, 694
 mechanism of action, 693
 CXCL10, 552
 Cystic fibrosis (CF), influenza susceptibility and severity, 288–289
 Cytomegalovirus (CMV), 249–250
 D
 DDX3, 555
 Deep mutational scanning (DMS), 168
 Defective interfering RNA, 8–9
 Defective ribosome products (DRiPs), influenza A virus function, 92
 Defective virus genome (DVG), transmission, 187–189
 DFSA, 721
 DHA. See Docosahexaenoic acid
 Diabetes, influenza susceptibility and severity, 251, 288
 Diridavumab. See CR6261
 DMS. See Deep mutational scanning
 Docosahexaenoic acid (DHA), 281
 DRiPs. See Defective ribosome products
 DVG. See Defective virus genome
 E
 E1B-AP5, 554
 EEA1, 145–146
 EMM. See Epitope masking model
 Epidemiology, human influenza
 avian influenza viruses
 H5N1, 314, 317
 H5N6, 315
 H7N4, 315
 H7N7, 315
 H7N9, 315, 317
 H9N2, 315
 H10N7, 317
 H10N8, 317
 control
 antiviral drugs, 307
 nonpharmaceutical interventions, 307–309
 vaccination, 306–307
 equine influenza viruses, 474–475
 incidence, 302–304
 public health impact, 305–306
 seasonality, 302
 severity profile, 304–305
 transmission modeling, 301–302
 Epitope masking model (EMM), 587–589
Equine influenza viruses
 clinical features in horses, 472–474
 epidemiology, 474–475
 evolution and antigenic drift, 468–471
 historical perspective, 466–468
 overview, 465–466
 transmission between species, 471–472
 vaccination, 475–476

Estradiol, 283

Evolution, influenza viruses
 antigenic drift, 211, 213
 avian influenza viruses
 H5N6, 321
 H7N9
 high-pathogenicity viruses, 319, 321
 low-pathogenicity viruses, 319
 bat influenza A viruses, 498–500
 cross-species transmission and evolution, 205–207
 equine influenza viruses, 468–471
 genetic reassortment
 avian influenza A virus, 207–208
 human influenza viruses, 208, 210
 overview, 207
 swine influenza viruses, 208
 H5N1 in Egypt, 355–358
 H7N9 in China, 368–370
 intrahost evolution, 213–214
 metagenomic studies, 202–204
 molecular epidemiology, 210–213
 origins, 201–202
 phylodynamic patterns, 210–212
 swine influenza A virus sustained lineages
 1A, 445
 1B, 445–446
 1C, 446
 H3, 446–447
 timescale, 204–205

F

Favipiravir
 efficacy, 684, 708–709
 mechanism of action, 708
 overview, 683–684, 708
 resistance, 684, 709
 safety, 684

Fc receptor-mediated inhibition model (FIM), 587–589

Feline influenza viruses
 avian influenza virus spillover, 488–489
 human influenza virus spillover, 487–488
 overview, 483

Ferret model
 overview, 511–512
 pathogenicity, 518–519
 pathogenicity of influenza virus, 513–515
 prospects for study, 519–521
 transmission of influenza virus, 515–517

FIM. See Fc receptor-mediated inhibition model

FluPol. See RNA polymerase, influenza virus

FOXP3, 268

G

Gene correlation analysis, influenza host factor identification, 163

Genome, influenza virus
 influenza A virus
 packaging
 models, 103
 prospects for study, 107–108
 ribonucleoprotein organization within virion, 103–105
 RNA–RNA interactions, 105–107
 segment-specific packaging, 102–103
 structure, 2, 79–80, 100–102
 replication
 host factors
 ANP32, 123–126
 Hsp90, 121–122
 MCM, 121
 nonprotein host factors, 126–127
 UAP56, 121–123
 overview, 120–121
 RNA polymerase, influenza virus, 6–7
 GOT2, 126

Gut microbiota
 animal studies of influenza transmission, 194–195
 disruption and influenza infection risk, 252

H

H1N1
 live attenuated influenza vaccine effectiveness, 665–668
 pandemics, 334. See also Spanish influenza pandemic
 reassortment, 210
 transmission, 186, 189–190, 193
 vaccine effectiveness, 650

H2N2
 B-cell immune response, 563
 evolution, 446–447
 pandemic, 230–231, 332, 334
 reassortment, 208
Index

H3N2, vaccine effectiveness, 650–651
H3N8
cross-species transmission, 207
transmission of equine virus, 471–472
H5N1
antigenic drift, 213
Egypt
biological properties, 358
control
active surveillance, 361
biosecurity enhancement, 359–361
culling of infected poultry, 361
vaccination, 360
emergence, 354
epidemiology, 354–355
evolution, 355–358
overview, 353–354
prospects for study, 362
reassortment, 359
zoonotic infections, 358–359
epidemiology, 314, 317
reassortment, 208
spillover into dogs and cats, 488–489
transmission, 189–190
H5N6
epidemiology, 315
evolution, 321
H5N8, emergence in Egypt, 359
H7N2, cat outbreak, 489–490
H7N4, epidemiology, 315
H7N7
epidemiology, 315
transmission, 194
H7N9
antigenic drift, 213
China
adaptation, 370
antigenicity, 375–376
control, 376–377
drug resistance, 375
emergence and evolution, 368–370
hemagglutinin receptor binding, 372–374
overview, 367–368
pathogenesis, 370–372
prospects for study, 377
transmission, 374–375
epidemiology, 315, 317
evolution
high-pathogenicity viruses, 319, 321
low-pathogenicity viruses, 319
reassortment, 208
transmission, 189
H9N2
antigenic sites, 404–406
clinical features, 395
epidemiology, 315
hemagglutinin features, 403, 407
lineage
Americas, 387, 389, 393
Eurasian lineage, 393–395
overview, 387, 390–392
natural history, 385, 387
origins, 202
overview, 385
pathology, 395–396
prospects for study, 407–408
public health risks, 395
reassortment, 208
transmission, 396–397, 403
tropism determinants, 398–400
vaccination, 407
virulence determinants, 401–402
H9N3, species distribution, 386
H9N4, species distribution, 386
H9N5, species distribution, 386
H9N6, species distribution, 386
H9N7, species distribution, 386
H9N8, species distribution, 386
H10N7, 317
H10N8, 317
H17N10, 202, 407
H18N11
control, 407
origins, 202
replication, 501–504
zoonotic risk, 505–506
HA. See Hemagglutinin
Hemagglutinin (HA)
antibodies
broadly reactive antibodies, 62–64
hemagglutinin receptor-binding site, 61–62
stem domain, 59–61
antigenic drift, 211, 582
antigenicity, 46–47, 58–59
avian influenza virus features in human infection, 318–319
B-cell antigens, 561
bat influenza A viruses MHC class II molecules, 500–501
classification, 53, 113–114
H5N1 prime and boost vaccination antibody responses, 590
H7N9 receptor binding, 372–374
H9N2 features, 403, 407
high-pathogenicity avian influenza viruses and genetic lineages associated with outbreaks, 428–435
humoral immune response modeling to hemagglutinin head and stem regions, 586–589
immune evasion, 58–59
membrane fusion
conformational changes at low pH, 45–46, 58
overview, 56–58
priming by precursor cleavage, 45, 57
neuraminidase interplay, 724–725
receptor binding
affinity and specificity, 40–45, 54–56
specificity by type
overview, 337
H1, 337
H2, 338–339
H3, 338–339
H4, 339
H5, 339
H6, 339–340
H7, 340
structure
comparison of structures from different techniques, 37
fusion subdomain F, 35, 37
group-specific features
comparison of groups, 37–40
rotation of R and E subdomains relative to F subdomain, 40
H1 hemagglutinin, 36
H3 hemagglutinin, 36
membrane anchor subdomain M, 37
overview, 33–35
vestigial esterase subdomain E, 35
swine influenza A virus phylogenetic lineages, 448–451
therapeutic targeting with antivirals, 688–690, 692–693
vaccine
antigens, 632–633
targeting, 64
HIV. See Human immunodeficiency virus
HOBIT, 558
Host factor identification, influenza virus
considerations in studies
controls, 158
host model system, 159
influenza virus strain, 158–159
proviral versus antiviral activity, 158
replication cycle stage, 158
type of host:virus interaction, 156, 158
importance of study, 155–156
prospects for study, 168–169
techniques for study
affinity purification mass spectrometry, 166–167
bimolecular fluorescent complementation, 165–166
CLIP-Seq, 167–168
CRISPR–Cas, 161–163
deep mutational scanning, 168
ectopic overexpression, 163
expression profiling, 163–164
gene correlation analysis, 163
knockout, 161–162
overview, 157, 159
RIP-Seq, 167–168
RNA interference, 159–161
single-nucleotide polymorphism analysis, 164
yeast two-hybrid screens, 164
Hsp90, 121–122
Human immunodeficiency virus (HIV), 250
Index

Immune response, influenza virus (Continued)
 PBI-F2, 555, 604
 PB2, 556
 RNA polymerase, 603
 pediatric influenza, 268–270
 preexisting immunity
 high levels in adults, 582–583
 importance, 581–582
 vaccination studies
 boosting of response to different epitopes, 584–586
 H5N1 prime and boost vaccination
 antibody responses, 590
 humoral immune response modeling to
 hemagglutinin head and stem regions, 586–589
 memory recall responses after vaccination, 584–585
 preexisting antibody titers and magnitude
 of response, 584
 prospects for study, 590–592
 systems biological analysis of vaccination
 immune response
 goals, 614
 historical perspective, 615–616
 limitations and challenges, 623–624
 proof-of-concept studies, 614–615
 TLR5, 615–618
 vaccine development applications
 adjuvant mechanism of action studies, 619–620
 antibody response signatures and
 persistence, 620–622
 antigen discovery, 622–623
 protection mechanisms in challenge
 studies, 622
 signatures of vaccine-induced
 immunogenicity and protection, 618–619

T cells
 CD4 T cells
 abundance and specificity of influenza-
 specific cells, 558–559
 cytolytic cells, 558
 follicular helper cells, 557–558
 identification of cell subsets in protective
 immunity, 559–561
 protective immunity, 556–557
 CD8 T cells
 aging effects, 566–567
 effector mechanisms, 566
 overview, 564–565
 protective immunity, 565

 specificity, 566
 Immunization. See Vaccination
 IMPa, 117–118
 Inactivated influenza vaccine. See Vaccination
 Incomplete virus genome (IVG), transmission, 187–189
 Influenza A virus (IAV)
 bat viruses. See Bat influenza A viruses
 emerging HxNy viruses
 hosts, 335–337
 matching pattern of gene segments, 344–346
 neuraminidase
 drug resistance profile, 342–344
 enzymatic activity, 340–341
 inhibitor binding specificity, 341–342
 overview, 331–332
 pandemic viruses, 332–333–334
 prospects for study, 346
 receptor binding specificity of hemagglutinin
 type
 H1, 337
 H2, 338–339
 H3, 338–339
 H4, 339
 H5, 339
 H6, 339–340
 H7, 340
 overview, 337
 genome
 packaging
 models, 103
 prospects for study, 107–108
 ribonucleoprotein organization within
 virion, 103–105
 RNA–RNA interactions, 105–107
 segment-specific packaging, 102–103
 structure, 2, 79–80, 100–102
 proteome
 accessory proteome, 83–93
 core proteome, 79–83
 prospects for study, 93–94
 swine viruses. See Swine influenza A viruses
 synthetic virus. See Synthetic virology
 Innate immunity. See Immune response,
 influenza virus
 Interferon
 influenza response, 598–599
 systems biological analysis of vaccination
 immune response, 615
 Intravenous immune globulin (IVIG), efficacy, 692
 IRF3, 553, 598
 IRF7, 598
 IRF9, 253

© 2021 by Cold Spring Harbor Laboratory Press. All rights reserved.
ISG15, 599–600
IVG. See Incomplete virus genome
IVIG. See Intravenous immune globulin

J
JNK, 144–146, 553

L
Laninamivir
 efficacy, 687–688
 mechanism of action, 720
 overview, 687
 resistance, 688
 safety, 688
LASAG, 142
LFA-1, 564
LGALS1, 324
LGP2, 598
Live attenuated influenza vaccine. See Vaccination

M
M1
 influenza A virus function, 82
 nuclear export, 129
M2
 influenza A virus function, 82, 114
 innate immunity regulation, 604
 vaccine antigens, 633
M42, influenza A virus function, 88–89
Malnutrition, severe influenza risks, 282–283
Mass spectrometry (MS), affinity purification
 mass spectrometry, 166–167
MAVS, 556
MCM, 121
MCP-1, 552
MDA5, 598
MEDI8852
 efficacy, 694
 mechanism of action, 693
Messenger RNA (mRNA), nuclear export, 120
MHAA4549A
 efficacy, 694
 mechanism of action, 693
Mini viral RNA (mvRNA), 8–10
MIP-1β, 552
mRNA. See Messenger RNA
MS. See Mass spectrometry
mvRNA. See Mini viral RNA
Mx1, 600

N
NA. See Neuraminidase
NA43, influenza A virus function, 88
NEP
 influenza A virus function, 82
 nuclear export, 129
Neuraminidase (NA)
 emerging HxNy viruses
 drug resistance profile, 342–344
 inhibitor binding specificity, 341–342
 enzymatic activity, 340–341, 717–718
 green fluorescent protein fusion, 179
 hemagglutinin interplay, 724–725
 influenza type distribution, 53
 swine influenza A viruses genetic lineages, 444
 therapeutic targeting, 685–688, 717–728
 vaccine antigens, 633
NF-κB. See Nuclear factor-κB
1918 pandemic. See Spanish influenza pandemic
Nitazoxanide (NTZ)
 efficacy, 690
 overview, 689–690
 resistance, 690
 safety, 690
NLRP3, 553, 555, 596, 617
NP
 amino-terminally extended isoform, 88
 influenza A virus function, 81
 structure, 3
 vaccine antigens, 634
NS1
 amino-terminally truncated isoforms, 89, 91
 evolution, 554–555
 influenza A virus function, 82
 innate immunity regulation, 552–554, 602–603
NS3, influenza A virus function, 91–92
NTZ. See Nitazoxanide
Nuclear factor-κB (NF-κB), 141–142, 553, 598
Nuclear import. See Viral ribonucleoprotein
NXF1, 120, 554
NXT1, 120

O
OAS. See Original antigenic sin
OASL, 600–601
Obesity, influenza infection risk, 251, 279–282
Original antigenic sin (OAS)
 aging and severe disease susceptibility, 287
 costs and benefits, 537
 immunological basis, 544–546
 mechanisms, 536–537
 misconceptions

© 2021 by Cold Spring Harbor Laboratory Press. All rights reserved.
Index

Original antigenic sin (OAS) (Continued)
constant feature of influenza virus immunity, 528, 533–535
inevitability, 535–536
limited to viruses within same subtype, 534
nonfunctional antibody generation, 534–535
restricted to antiviral immunity, 536–537
overview, 527–528, 543–544, 561–552
pediatric influenza effects, 544
prospects for study, 537–538, 547–548
recall antibody studies after infection
animal models, 531–532
humans, 529–530, 583–584
vaccination effects in young children, 546–547
Oseltamivir
antibiotic combination therapy, 695–696
derivatives, 720–721
H7N9 resistance, 375
mechanism of action, 114, 719–720
neuraminidase resistance, 342
resistance, 722

P
p38 mitogen-activated protein kinase, influenza virus activation and therapeutic targeting, 144–146
PA
IMPα-independent nuclear import, 118
influenza A virus function, 81
PAFR, 282
PA-N155, influenza A virus function, 86–87
PA-N182, influenza A virus function, 86–87
PA-X
influenza A virus function, 87–88
innate immunity regulation, 554–555, 603–604
PB1
IMPα-independent nuclear import, 118
influenza A virus function, 81, 114
PB1-F2
evolution, 555–556
influenza A virus function, 84, 86
innate immunity regulation, 555, 604
PB1-N40, influenza A virus function, 86
PB2
influenza A virus function, 81, 114
innate immunity regulations, 556
phylogeny, 202
PB2-S1, influenza A virus function, 84
Pediatric influenza
clinical presentation, 264–266
immune response, 268–270
original antigenic sin, 544
overview, 263–264
prospects for study, 270–272
transmission, 266–267
vaccination mechanisms
inactivated vaccine, 270
live attenuated vaccine, 270
prevention, 267–268
Peramivir, 720
PI3K, influenza modulation, 146–149
Pimodivir
efficacy, 682–683, 710
mechanism of action, 709–710
overview, 682, 709
resistance, 683, 710
safety, 683
PlsK, 553
PKR, 600
PP7CP, 178
Pregnancy, influenza susceptibility and severity, 251, 284–285
Progesterone, 283

Q
Quarantine, 308

R
Rab11A, 130–131
RAE1, 554
Raf/MEK/ERK
classical MAPK cascade, 142–143
influenza virus activation and therapeutic targeting, 143–144
nuclear export role, 128–129
RAF1, 121
RAF2. See UAP56
Rapamycin, efficacy against influenza, 697
Reassortment. See Avian influenza viruses; Evolution, influenza viruses
RED, 164
Reverse genetics
historical perspective of influenza studies
alternative approaches, 224–225
bidirectional reverse genetics systems, 224
ribonucleoprotein complex isolation, 222
ribozyme generation of viral RNA 3' ends, 224
RNA polymerase I features, 222–223
species specificity of promoter, 225–226
virus generation from cDNA, 223–224
non-influenza A viruses, 226
overview, 221
prospects, 226
| RIG-I, 10, 84, 114–115, 139–141, 148, 168, 553, 555, 596, 598 |
| rIPK, 146 |
| RIPLET, 598 |
| RIP-Seq, 167–168 |
| RNA polymerase I features in reverse genetics, 222–223 |
| influenza virus generation from cDNA, 223–224 |
| species specificity of promoter, 225–226 |
| RNA polymerase II, role in virus transcription, 118–120 |
| RNA polymerase, influenza virus (FluPol) conformational flexibility, 23–25 |
| dimerization, 23–25 |
| host factor interactions and adaptive mutations, 7–8 |
| host-specific mutations in double domain, 21 |
| innate immunity regulation, 603 |
| mechanism of RNA synthesis active site, 25–26 |
| nucleotide addition cycle, 25–27 |
| priming loop, 26, 28 |
| overview, 15–17 |
| promoter binding modes, 22–23 |
| prospects for study, 29–30 |
| replication, 6–7 |
| RNA-binding sites, 4 |
| structure architecture, 3–4 |
| domains cap-binding domain, 17–19 |
| endonuclease, 19–20 |
| PA-C, 21–22 |
| 627-NLS double domain, 20–21 |
| overall structure, 16–17 |
| therapeutic targeting, 680–684, 707–713 |
| transcription, 4–6, 28–29 |
| RSK2, 144 |
| SNP. See Single-nucleotide polymorphism |
| SOCS1, 280 |
| SOCS3, 280 |
| Spanish influenza pandemic global impact, 229–231 |
| lessons learned, 238–239 |
| origin, 231–233 |
| pathogenicity, 233–238 |
| recovery, 231 |
| virus evolution, 204–205, 332 |
| STAT1, 145 |
| STAT4, 145 |
| STING, 599 |
| Susceptibility, influenza A virus infection immune correlates of protection and severity, 255–256 |
| initial exposure, 246 |
| occupational risks, 248 |
| overview, 245–246 |
| protecting high-risk populations, 289–290 |
| severe disease susceptibility factors age, 248–250, 285–287 |
| bacterial coinfection, 252 |
| chronic obstructive pulmonary disease, 252, 288 |
| diabetes, 251, 288 |
| genetic susceptibility |
| CD55, 255 |
| IFITM3, 254–255 |
| IL28B, 254 |
| IRF9, 253 |
| overview, 252–253 |
| TLR3, 253, 255 |
| immunocompromised status, 250 |
| microbiome disruption, 252 |
| obesity, 251, 279–282 |
| pregnancy, 251, 284–285 |
| sex differences, 250–251, 283–284 |
| vaccine history and preexisting immunity, 247–248 |
| virus-intrinsic changes, 246–247 |
| svRNA. See Small viral RNA |
| Swine influenza A viruses candidate vaccine virus development and assessment, 454–459 |
| clinical aspects in pigs, 442, 445 |
| current circulating diversity in swine, 447, 449–450, 452 |
| evolution of sustained lineages 1A, 445 |
| 1B, 445–446 |
| 1C, 446 |
| H3, 446–447 |
Swine influenza A viruses (Continued)
- hemagglutinin phylogenetic lineages, 448–451
- human risks, 452–454
- neuraminidase genetic lineages, 444
 overview, 441–442
- phylogeny, 443
- prospects for study, 458, 460

Synthetic virology
- applications, 182
 circuit modules
 - browser history module, 179–180
 - genetic override module, 180
 - GPS module, 181
 - isolation, 178
 - RNA interference module, 181
 - tracking module, 178–179
- influenza A virus circuitry, 176–178
 overview, 175–176

Systems vaccinology. See Vaccination

T
- Tamiflu. See Oseltamivir
- TBK-1, 140

T cell, influenza immune response
- CD4 T cells
 - abundance and specificity of influenza-specific cells, 558–559
 - cytolytic cells, 558
 - follicular helper cells, 557–558
 - identification of cell subsets in protective immunity, 559–561
 - protective immunity, 556–557
- CD8 T cells
 - aging effects, 566–567
 - effector mechanisms, 566
 - overview, 564–565
 - protective immunity, 565
 - specificity, 566
 - efficacy, 694–695
 - mechanism of action, 693
- TCN-032
- Test-negative design (TND), 649–650, 664
- Testosterone, 283
- TLR3, 598
- TLR3, 253, 255
- TLR4, 145
- TLR5, systems biological analysis of vaccination immune response, 615–618
- TLR7, 598
- TLR8, 598
- TMPRSS2, 324
- TND. See Test-negative design
- TNPO1, 115
- TRAIL, 142
- Transcription
 - RNA polymerase, influenza virus, 4–6, 28–29
 - RNA polymerase II role in virus transcription, 118–120
- Transmission
 - animal models
 - age effects, 194–195
 - immune status studies, 194
 - microbiome studies, 194–195
 - overview, 193
 - route of transmission, 193–194
 - bottlenecks
 - influenza diversity, 186–187
 - quantification, 190–193
 - cross-species transmission and evolution, 205–207
 - defective and incomplete virus particles, 187–189
 - emerging influenza viruses, 189–190
 - equine influenza viruses, 471–472
 - ferrets and influenza virus, 515–517
 - H7N9 in China, 374–375
 - H9N2, 396–397, 403
 - modeling, 301–302
 - overview, 185–186
 - pediatric influenza, 266–267
 - prospects for study, 195
- TRIM14, 602
- TRIM22, 602
- TRIM25, 555, 598
- TRIM28, 145
- TRIM32, 602
- TRIM56, 601
- Tuberculosis, influenza susceptibility and severity, 289

U
- UAP56, 121–123
- Umifenovir
 - efficacy, 688–689
 - overview, 688
 - resistance, 689
 - safety, 689
- Vaccination
 - antigen targets, 632–634
 - biological challenges, 631–632
 - effectiveness and efficacy end points, 648–649
host factors affecting
imprinting and cohort effects, 653
repeated vaccinations, 651–653
inactivated influenza vaccines
adjuvanted vaccine, 654
cell culture-based vaccine, 655
high-dose vaccine, 654–655
recombinant vaccine, 655
observational studies, 648
overview, 647–649
prospects for study, 655–656
randomized controlled trials, 648
relative effectiveness study
challenges, 655
test-negative design, 649–650
vaccine effectiveness by influenza type
H1N1, 650
H3N2, 650–651
type B, 651
virus factors affecting
egg-induced mutations, 651
strain, 651
waning, 653–654
equine influenza viruses, 475–476
H5N1 in Egypt, 360
H7N9 in China, 376–377
H9N2, 407
hemagglutinin targeting, 64
historical perspective, 629–631
infection susceptibility impact, 247–248
live attenuated influenza vaccine
clinical experience
pandemic of 2009, 664
randomized studies, 665
U.S. influenza VE network, 664–665
historical perspective, 662–664
overview, 661–662
pandemic vaccines, 670–671
prospects, 671–672
protection correlates, 669–670
Russian backbone vaccine, 668–669
vaccine effectiveness against H1N1, 665–668
monitoring, 306–307
next-generation vaccines
high-performance seasonal vaccines, 634
pandemic
preparedness, 637
response, 637–638
prospects, 639–640
supraseasonal vaccines, 634–637
universal vaccines, 638–639
original antigenic sin effects in young
children, 546–547
pediatric influenza
mechanisms
inactivated vaccine, 270
live attenuated vaccine, 270
prevention, 267–268
preexisting immunity studies
boosting of response to different epitopes, 584–586
H5N1 prime and boost vaccination antibody responses, 590
humoral immune response modeling to
hemagglutinin head and stem regions, 586–589
memory recall responses after vaccination, 584–585
preexisting antibody titers and magnitude of response, 584
prospects for study, 590–592
swine influenza A virus candidate vaccine
virus development and assessment, 454–459
systems biological analysis of immune response
goals, 614
historical perspective, 615–616
limitations and challenges, 623–624
proof-of-concept studies, 614–615
TLR5, 615–618
vaccine development applications
adjuvant mechanism of action studies, 619–620
antibody response signatures and persistence, 620–622
antigen discovery, 622–623
protection mechanisms in challenge studies, 622
signatures of vaccine-induced
immunogenicity and protection, 618–619
V
VDAC1, 555
Viral ribonucleoprotein (vRNP)
architecture, 3, 100–102
nuclear export
CLUH role, 130
CRM1 role, 129–130
overview, 127
plasma membrane transport, 130–131
Raf/MEK/ERK signaling, 128–129
nuclear import
Index

Viral ribonucleoprotein (vRNP) (Continued)
- classical pathway, 116–117
- IMP\(\alpha\)-independent nuclear import, 118
- noncanonical roles of \(\alpha\)-importins, 117–118
- overview, 115
- precursor steps, 115–116
- organization within virion, 103–105

VIS410
- efficacy, 695
- mechanism of action, 693

vRNP. See Viral ribonucleoprotein

Y
- Yeast two-hybrid screens, 164

Z
- Zanamivir
 - efficacy, 686
 - overview, 685–686, 719
 - resistance, 687, 722
 - safety, 686–687