DNA Replication

A subject collection from *Cold Spring Harbor Perspectives in Biology*
OTHER SUBJECT COLLECTIONS FROM COLD SPRING HARBOR
PERSPECTIVES IN BIOLOGY

Wnt Signaling
Protein Synthesis and Translational Control
The Synapse
Extracellular Matrix Biology
Protein Homeostasis
Calcium Signaling
The Golgi
Germ Cells
The Mammary Gland as an Experimental Model
The Biology of Lipids: Trafficking, Regulation, and Function
Auxin Signaling: From Synthesis to Systems Biology
The Nucleus
Neuronal Guidance: The Biology of Brain Wiring
Cell Biology of Bacteria
Cell–Cell Junctions
Generation and Interpretation of Morphogen Gradients
Immunoreceptor Signaling
NF-κB: A Network Hub Controlling Immunity, Inflammation, and Cancer
Symmetry Breaking in Biology
The Origins of Life
The p53 Family

SUBJECT COLLECTIONS FROM COLD SPRING HARBOR
PERSPECTIVES IN MEDICINE

Addiction
Parkinson’s Disease
Type 1 Diabetes
Angiogenesis: Biology and Pathology
HIV: From Biology to Prevention and Treatment
The Biology of Alzheimer Disease
DNA Replication

A subject collection from Cold Spring Harbor Perspectives in Biology

EDITED BY

Stephen D. Bell
Indiana University, Bloomington

Marcel Méchali
Institute of Human Genetics, CNRS, Montpellier

Melvin L. DePamphilis
National Institutes of Health, Bethesda
Contents

Preface, ix

Dedication to Arthur Kornberg, xi

In Memoriam, xiii

Principles and Concepts of DNA Replication in Bacteria, Archaea, and Eukarya, 1
Michael O’Donnell, Lance Langston, and Bruce Stillman

DNA Replication Origins, 15
Alan C. Leonard and Marcel Méchali

Dormant Replication Origins, 33
Debbie McIntosh and J. Julian Blow

Break-Induced DNA Replication, 43
Ranjith P. Anand, Susan T. Lovett, and James E. Haber

Helicase Loading at Chromosomal Origins of Replication, 61
Stephen P. Bell and Jon M. Kaguni

Helicase Activation and Establishment of Replication Forks at Chromosomal Origins of Replication, 81
Seiji Tanaka and Hiroyuki Araki

The Minichromosome Maintenance Replicative Helicase, 95
Stephen D. Bell and Michael R. Botchan

Spatial and Temporal Organization of DNA Replication in Bacteria and Eukarya, 107
Dean Jackson, Xindan Wang, and David Z. Rudner

DNA Replication Timing, 121
Nicholas Rhind and David M. Gilbert

Replication-Fork Dynamics, 147
Karl E. Duderstadt, Rodrigo Reyes-Lamothe, Antoine M. van Oijen, and David J. Sherratt

Replication Clamps and Clamp Loaders, 165
Mark Hedglin, Ravindra Kumar, and Stephen J. Benković

Okazaki Fragment Metabolism, 185
Lata Balakrishnan and Robert A. Bambara
Contents

Chromatin and DNA Replication, 197
David M. MacAlpine and Geneviève Almouzni

Sister Chromatid Cohesion, 219
Jan-Michael Peters and Tomoko Nishiyama

Replicative DNA Polymerases, 237
Erik Johansson and Nicholas Dixon

Translesion DNA Polymerases, 251
Myron F. Goodman and Roger Woodgate

Rescuing Stalled or Damaged Replication Forks, 271
Joseph T.P. Yeeles, Jérôme Poli, Kenneth J. Marians, and Philippe Pasero

Replication of Telomeres and the Regulation of Telomerase, 287
Verena Pfeiffer and Joachim Lingner

Genomic Instability in Cancer, 309
Tarek Abbas, Mignon A. Keaton, and Anindya Dutta

Replication Proteins and Human Disease, 327
Andrew P. Jackson, Ronald A. Laskey, and Nicholas Coleman

Regulating DNA Replication in Bacteria, 343
Kirsten Skarstad and Tsutomu Katayama

Regulating DNA Replication in Eukarya, 361
Khalid Siddiqui, Kin Fan On, and John F.X. Diffley

Regulating DNA Replication in Plants, 381
Maria de la Paz Sanchez, Celina Costas, Joana Sequeira-Mendes, and Crisanto Gutierrez

Endoreplication, 399
Norman Zielke, Bruce A. Edgar, and Melvin L. DePamphilis

Archaeology of Eukaryotic DNA Replication, 415
Kira S. Makarova and Eugene V. Koonin

Human Mitochondrial DNA Replication, 441
Ian J. Holt and Aurelio Reyes

Parvovirus Diversity and DNA Damage Responses, 457
Susan F. Cotmore and Peter Tattersall

Human Papillomavirus Infections: Warts or Cancer?, 469
Louise T. Chow and Thomas R. Broker

vi
Contents

Adenovirus DNA Replication, 487
Rob C. Hoeben and Taco G. Uil

Herpes Simplex Virus DNA Replication, 499
Sandra K. Weller and Donald M. Coen

Epstein–Barr Virus DNA Replication, 513
Wolfgang Hammerschmidt and Bill Sugden

Poxvirus DNA Replication, 527
Bernard Moss

Appendix, 539
 Table 1. Databases for identification of genes in different organisms, 539
 Table 2. Style conventions for gene and protein nomenclature, 540
 Table 3. Nomenclature for proteins and protein complexes in different organisms, 541

Index, 551
Preface

The fundamental principles that govern DNA replication are elegant and simple. Take a DNA double helix, unzip it, and, following the chemical rules of base complementarity, use the single strands as templates to generate new daughter molecules. Yet to accomplish this task in appropriate time and space, and with sufficient fidelity, requires the coordinated interplay and regulation of a multitude of complex protein assemblies. In the ensuing pages, 77 authors describe the exquisite complexity of the macromolecular machines that drive this conceptually simple process. This is a truly exciting field in which to work—the rate of progress of the development of techniques and concepts is remarkable. This is reflected by the fact that this book comes just 6 years after the last Cold Spring Harbor Laboratory Press volume on the subject. During that time we have learned much about the core mechanisms of replication-associated processes and have gained a much fuller appreciation of the interplay between the regulatory circuits that drive cell cycle progression and the replication apparatus itself. As will be apparent from the contents of the book, the full complement of state-of-the-art techniques, from structural biology through biophysical analyses, single-molecule studies, biochemistry, genetics, genomics, imaging, and cell biology, have been exploited with remarkable effect to tease apart these intricate processes.

DNA replication is, of course, fundamental to the propagation of all life on the planet. It is a process that when it goes awry can have profound consequences for the organism. In the case of humans, as detailed by Abbas et al. and A.P. Jackson et al., errors in replication can lead to cancer, yet, conversely, the very presence of elevated levels of replication-associated proteins can be a powerful indicator of cancerous or precancerous conditions. Human pathogens, whether bacterial or viral, need to replicate their genomes within their host. Authors Cotmore and Tattersall, Chow and Broker, Hoeben and Uil, Weller and Coen, Hammerschmidt and Sugden, and Moss all deal with the mechanisms of viral DNA replication. In many cases virus-specific proteins facilitate initiation of replication but then co-opt components of the cellular machinery for elongation. By characterizing the virus-specific components, potential candidates for drug development can be identified. At least part of the reason viruses encode their own initiator proteins is to circumvent the cellular circuitry that controls DNA replication and, in most cases, limits it to occurring once per cell division cycle. The chapter by Zielke et al. deals with some important exceptions to this once per cell division cycle rule. The interface between control circuitry and core machinery is complex and tightly interwoven in eukaryotes, and Leonard and Mechali, McIntosh and Blow, Bell and Kaguni, Tanaka and Araki, D. Jackson et al., Rhind and Gilbert, Siddiqui et al., and de la Paz Sanchez et al. all deal with the various aspects of this interplay. Indeed, although a number of aspects linked to the mechanisms of DNA synthesis appear to be conserved in all living organisms, new regulatory events have been introduced in the process of the initiation of DNA replication in metazoans. Origins of DNA replication appear to be more complex structures, involving different sequence constraints and epigenetic controls, and these are probably tightly linked to cell cycle controls and adaptations to cell identity. New factors involved in the assembly and control of replication origin complexes thus appeared during evolution. These aspects are treated in chapters by Leonard and Mechali, Tanaka and Araki, Siddiqui et al., and de la Paz Sanchez et al.

Given the essential and mechanistically conserved nature of DNA replication, it is perhaps surprising that bacteria utilize a set of proteins that are not orthologous to their counterparts in archaea and eukaryotes. As detailed in chapters by O’Donnell et al., Duderstadt et al., and Skarstad and
Katayama, although the basic tenets of replication are similar between the three domains of life, the machineries have some important differences. Makarova and Koonin explore the evolution of these distinct apparatuses and the relationship between archaeal and eukaryal replication-associated proteins. However, it must not be forgotten that eukaryotic cells harbor remnant bacteria in the form of mitochondria with their own replication proteins and processes, and these are described in the chapter by Holt and Reyes.

Despite the variation in the precise nature of the proteins that mediate DNA replication, all cellular organisms replicate their DNA via a common structure—the replication fork. The structure is propagated by the action of the replicative helicase, built around the minichromosome maintenance (MCM) complex in archaea and eukaryotes. The nature and activation of this assembly is discussed in chapters by Tanaka and Araki and Bell and Botchan. The helicase provides single-stranded DNA that acts as a template for synthesis of new DNA by the replicative DNA polymerases on the exposed single-stranded templates on both leading and lagging strand (chapters by Johansson and Dixon and Peters and Nishiyama). Because of the low inherent processivity of the polymerases, they require an interaction with a sliding clamp that, in turn, must be actively loaded onto DNA, a conserved process that is discussed by Hedglin et al. Because of the discontinuous nature of lagging-strand replication, this is a highly dynamic assembly. As detailed in the chapter by Duderstadt et al., recent single-molecule studies both in vivo and in vitro have yielded significant insight into the coordination of events during replication-fork progression in a variety of model systems. Balakrishnan and Bambara discuss the interplay of a variety of pathways that lead to maturation of the lagging-strand DNA from RNA-primed Okazaki fragments to covalently intact DNA molecules.

During the life of a replication fork, DNA lesions or other impediments to its progress may be encountered, potentially resulting in fork stalling or even collapse. Cells have evolved complex checkpoint pathways to deal with such events and a variety of mechanisms can be brought into play to rescue stalled or damaged replication forks (Yeeles et al.). These can include the co-option of specialized lesion bypass polymerases that have the capacity to synthesize over even quite bulky lesions in DNA; however, this has the potential to introduce mutation into DNA and so must be tightly controlled (Goodman and Woodgate). Another DNA repair pathway that utilizes the replication apparatus is break-induced replication (Anand et al.).

The extraordinary degree of compaction of eukaryotic genomes into chromatin, combined with the importance of epigenetic regulation of gene expression, has led to a tight association of chromatin assembly proteins with the replication fork. The coordination between these pathways is described in MacAlpine and Almouzni. Another eukaryotic-specific issue lies in the replication of telomeres. Since the last volume, tremendous progress has been made in understanding the protein complexes that carry out this specialized task (Pfeiffer and Lingner). Another process that in eukaryotes is inextricably intertwined with replication is the establishment of sister chromatid cohesion (Peters and Nishiyama).

It has been a true pleasure for the editors to work with leading members of the field to put this book together and we would like to express our gratitude to the authors for their contributions. We are also profoundly grateful to Barbara Acosta, Inez Sialiano, and Diane Schubach at Cold Spring Harbor Laboratory Press for their skillful and dedicated assistance.

Stephen D. Bell
Marcel Mîchali
Melvin L. DePamphilis
Dedication to Arthur Kornberg

This book is dedicated to Arthur Kornberg, who was more than a pioneer in the field of DNA replication—he was a legend in his own lifetime. Arthur was a great source of inspiration to scientists interested in DNA replication for an unusually long period of time. In his laboratory, outstanding discoveries were made that paved the way in this field for decades that followed. Among them, three milestones must be remembered. First and foremost was the discovery that DNA synthesis is an enzymatic process carried out by a protein that Arthur purified with the assistance of two postdoctoral fellows, Maurice Bessman and Robert Lehman, and named DNA polymerase (1956–1958) (Kornberg et al. 1956; Lehman et al. 1958). In 1959, one year after publication of this discovery, Arthur Kornberg was awarded the Nobel Prize in Physiology or Medicine. The second milestone was the complete synthesis of a biologically active viral DNA (Goulian and Kornberg 1967) that was carried out in collaboration with Mehran Goulian and Robert Sinsheimer, and hailed in the popular press as “creation of life in a test tube.” The third milestone was the in vitro reproduction of the initiation of DNA synthesis from the Escherichia coli origin of DNA replication (Fuller et al. 1981). During this period, scientists in Arthur’s laboratory identified most of the proteins involved in bacterial DNA synthesis, a feat that alone would also have deserved a Nobel Prize. The work generated by his laboratory was prodigious. Everyone in this field can probably remember following the DNA replication enzymology series published nearly every month in The Journal of Biological Chemistry (173 papers in all), sometimes with up to 10 episodes in a single issue! This avalanche of pioneering results often left people with the impression that every important mechanism had been solved in DNA replication. However, as this book reveals, DNA replication in archaea and multicellular eukaryotes is more than just an “interesting variation” of what has been observed in bacteria (Kornberg 1979).

Research performed in the Kornberg laboratory was also a magnificent example of the power of biochemistry and enzymology, and Arthur was always very keen to promote this field. Arthur Kornberg is also well known for his quotations, in particular his famous version of “The Ten Commandments” (Kornberg 2003), of which number III, “Thou shalt not believe something just because you can explain it,” and number IV, “Thou shalt not waste clean thinking on dirty enzymes,” are often quoted. Arguably Arthur’s greatest contribution to science was the host of students and postdoctoral fellows he mentored, many of whom became outstanding scientists in their own right. He infected all of us with his love of science. In an editorial Arthur wrote in 1995 (Kornberg 1995), he said, “[R]ich or poor, science is great! To frame a question and arrive at an answer that opens a window to yet another question, and to do this in the company of like-minded people with whom one can share the thrill of unanticipated and extended vistas, is what science is all about. That is what will sustain us in the days and years ahead.”

Marcel Mechali
Stephen D. Bell
Melvin L. DePamphilis
References

We fondly remember Arturo Falaschi as a colleague of extraordinary energy, creativity, and dedication to the field of DNA replication and to the development of European science. Bolstered by the 3 years (1962–1965) he spent as a postdoctoral fellow with Arthur Kornberg, Arturo turned his attention to the complexities of DNA replication in eukaryotic cells. His laboratory developed pioneering methods to map DNA replication origins along chromosomes and characterized in detail the lamin B2 origin of DNA replication. He was also deeply involved in the biochemistry of DNA replication, with the characterization of several proteins, including DNA helicases, and topoisomerases. Arturo Falaschi was also responsible for the International Centre for Genetic Engineering and Biotechnology (ICGEB), an international research organization conceived within the United Nations, creating two laboratories in Trieste and New Dehli, promoting research and training young scientists from developing countries.
Index

A
A20, 531
A32, 534
AAA proteins, 4–5, 16, 68
Abf1, 22
ACE. See ATP-utilizing chromatin assembly and remodeling factor
ACS. See Autonomous consensus sequences
Adeno-associated virus. See Parvovirus
Adenovirus
- antiviral therapy, 493–494
- classification, 487
- clinical importance, 493
- DNA replication
 - cellular factors in initiation, 492–493
 - functions
 - adenovirus DNA polymerase, 490–491
 - DBP, 492
 - precursor TP, 489–490
 - model, 487–489
Adherin, cohesin loading onto DNA, 221
AIC316, 508
Anaphase-promoting complex/cyclosome (APC/C), 362–363, 369, 371, 389, 403
Anf1, 293
APC/C. See Anaphase-promoting complex/cyclosome
ARS. See Autonomous replication sequences
ARS1, 211
ASF1, 200, 203–204
ATM, 317–318, 320, 454, 476
ATP-utilizing chromatin assembly and remodeling factor (ACF), 203
ATR, 35–36, 317–319, 454
ATXR5, 388
ATXR6, 388
Autonomous consensus sequences (ACS), 21–23
Autonomous replication sequences (ARS), 21

B
Bailer–Gerold syndrome, 328–329
Base excision repair, long patch base excision repair
- similarities with Okazaki fragment processing, 192
β clamp
- structure
 - crystal structures, 165–167

BIR. See Break-induced replication
BLM. See Bloom syndrome
Bloom syndrome (BLM), 328
Bovine parvovirus. See Parvovirus
BRCA1, 390
Brc2a, 276

Break-induced replication (BIR). See also DNA damage
- bacteriophage T4, 44–46
- Drosophila, 55
- Escherichia coli, 46–48
- Kluyveromyces lactis, 54–55
- mammals, 55–56
- microhomology-mediated break-induced replication, 56–57
- overview, 43, 45
Saccharomyces cerevisiae
- mutagenicity of replication, 53–54
- overview, 48–49
Rad51-dependent replication
- double-strand break-dependent replication, 49–50
- double-strand break-independent replication, 50–51
- initiation of DNA synthesis, 52–53
- recombination-mediated establishment of replication, 52
- transformation, 49
- resolution of Holliday junctions, 54
- telomere maintenance, 51–52
Schizosaccharomyces pombe, 55
BRLF1, 520
BZLF1, 520–521
BZLH1, 521

C
CAF-1, 199–202, 207
Cajal body, telomerase enrichment, 301
Cancer. See also Human papillomavirus
- antirereplication mechanisms
 - Cdc6, 313–314
 - Cdc18, 313–314
 - Cdt1, 313–314
 - CRLA, 315–316
 - cyclin-dependent kinases, 312–313

551
Cancer. See also Human papillomavirus (Continued.)
DDK function, 310–312
geminin, 315–316
Mcm2–7, 314–315
model systems, 310
origin recognition complex proteins, 313
p53, 315–316
prereplication complex assembly inhibition, 310
cell cycle markers in prognosis, 338–339
diagnosis using DNA replication proteins, 332
DNA damage effects on DNA replication
 cellular responses, 317–320
double-strand break repair, 319
overview, 317
point mutations and microsatellite instability, 320–321
replication fork rescue, 319–320
genomic instability
 overview, 309–310
 prospects for study, 321–322
Mcm proteins as markers
 advantages, 334–335
cervical cancer, 335–337
colorectal cancer, 337–338
detection of cells, 335
 sensitivity, 332–333
rereplication
 cancer driver, 316
 inducers for therapy, 316–317
Canine parvovirus. See Parvovirus
Ccq1, 294, 300
Cdc2, 313, 475
Cdc6, 16, 21, 38, 68–70, 210, 279, 313–314, 315–316,
 331, 361, 364, 369, 371, 389, 382
Cdc7. See DDK
Cdc10, 366
Cdc13, 293, 299–300, 302, 313
Cdc18, 313–314, 366
Cdc23, 366
Cdc25, 37, 406, 475
Cdc25A, 319
Cdc28, 364
Cdc45, 5, 8–9, 311–312, 424–425
 MCM interactions, 102
 plants, 383
Cdh1, 363, 403
Cdk2, 319
CDKs. See Cyclin-dependent kinases
Cdt1, 5–6, 16, 38–39, 68–70, 210, 313–316, 331, 334,
 364, 366, 368–372, 389, 382, 407, 361
Cdt2, 367, 402
Chk1, 35–37, 318–319, 409
Chk2, 318
Chromatin
 assembly, 199–202
 biological functions
extended S-phase rationale, 138–139
temporal order of replication, 139–140
checkpoint effects, 138
disruption at replication fork, 202–204
establishment
 chromosome domain in setting, 137–138
 execution comparison, 136
execution
 competition for rate-limiting factors, 136–137
 establishment comparison, 136
histones
H2A variants, 198
H3 variants, 197–198
overview, 197
posttranslational modifications
 epigenetic state maintenance, 204–207
 newly synthesized histones, 205–207
types, 199
replication-dependent deposition, 199–202
replication fork dynamics, 199–200
replication-independent deposition of H3.3 and cenH3, 200
stoichiometry of deposition, 204
temporal expression, 198–199
nucleosome positioning, 207–208, 211–212
origin environment
 metazoans, 25–26
 yeast, 22–23
origin regulation
 histone modification, 209–211
 nucleosome positioning in origin selection, 211–212
 overview, 208–209
prospects for study, 140–141
replication timing regulation
 chromatin interaction map studies of timing, 134–135
 G, determinant loss before G, 133
 proteins, 131–132
 replication foci as cytogenetic unit of timing, 133–134
 spatial compartmentalization of early and late replication, 132
 subnuclear position changes and cell fate transitions, 133
 sister chromatid adhesion. See Sister chromatid adhesion
Chromosome
 organization in bacteria, 108–111
 structure and replication timing, 115–116
Cidofovir, 508
Cig2, 366
Clamp loader
 composition and architecture
 Archaea, 170–171
bacteria, 168
bacteriophage T4, 169–170
replication factor C, 170
DNA-dependent ATPase activity, 171–172
mechanism of action
 closure of clamp ring, 175–176
 opening of clamp ring, 172–174
 PT junction binding, 174–175
prospects for study, 177
unloading, 176–177
Clamp. See specific clamps
Clb2, 364, 366
Cln2, 364
CMX001, 508
Cohesin
 acetylation, 227–228
 attachment regions on genome, 224–226
 coevolution of acetylation and Wapl-mediated release from DNA, 230–231
 CTCF recruitment and chromatin structure effects, 225–226
 loading onto DNA, 221, 223–224
 removal from mitotic chromosomes, 229
 separate cleavage, 231–232
 sister chromatid adhesion role, 226–227
 sororin stabilization, 228–229
 structure, 220–222
 Wapl in release from DNA, 229–230
Comparative genomics, prediction of new replication machinery components, 434
CRL4
 antirereplication mechanisms, 315–316
 endocycle role, 402
Ctc1, 302
CTCF, cohesin recruitment, 225–226
Ctf4, 9, 278
Cut5, 366
Cyclin A, endocycling role, 405–406
Cyclin D, 38
Cyclin-dependent kinases (CDKs)
 antirereplication mechanisms, 312–313
 cell cycle control of replication initiation in metazoans, 371
 Saccharomyces cerevisiae
 origin firing, 365
 origin licensing, 364–365
 pre-replication complex assembly, 364
 Schizosaccharomyces pombe
 origin firing, 367
 origin licensing, 366–367
 unperturbed cell cycle, 362–364
 endocycle driving by cyclin E-CDK2 oscillation, 401, 403
 G phase suppression, 404–405
 Cyclin E, 38, 401, 403

D
 Dam methylase, 352
 Dap, 404
 DARS1, 348–349
 DARS2, 348–349
datA, 349
Dbf4, 311
Dbf4-dependent kinase. See DDK
Dbh, 258
Dbp11, 7, 427
DDK, 427–428
 antirereplication mechanisms, 310–312
 Cdc45 association with origins, 83–84
 origin firing control
 overview, 365–366
 yeast, 365–366
 Deoxyuridine triphosphatase, 505
DiaA, 350
DinB, 258
Dna2, 190, 192–193
DnaA, 18, 20, 47
 domains, 63–64
 helicase loading, 66–67
 regulation
 Bacillus subtilis, 352–353
 Caulobacter crescentus, 353
 Escherichia coli
 acidic phospholipid regulation, 349–350
 binding to sites other than oriC, 349
 coordinated regulation of oriC and DnaA, 352
 DARS function, 349
 multimer formation regulation by DiaA, 350
 nucleotide form regulation by RIDA, 350–352
 overview, 348
 transcription, 348–349
 unwinding of oriC, 66
DnaB, 5, 7, 48, 64–66, 157, 429
DnaC, 5, 7, 18, 47
 DnaB complex and regulation of DnaB, 64–66
 regulation of DnaB, 66
DNA damage
 break-induced replication. See Break-induced replication
DNA replication and cancer
 cellular responses, 317–320
 double-strand break repair, 319
 overview, 317
 point mutations and microsatellite instability, 320
 replication fork rescue, 319–320
 parvovirus-induced DNA damage responses, 463–465
 prospects for study, 465–466
 replication comparison between bacteria, Archaea, and eukaryotes, 9–10
 sister chromatid adhesion induction, 229
DNA damage (Continued.)
translesion synthesis. See Translesion synthesis
DnaG, 429
DNA ligase
 evolution, 431–432
poxvirus, 532–533
DNA polymerase. See also specific polymerases
adenovirus, 490–491
archaeal and eukaryotic replication system
 comparison, 417
classification of replicative polymerases, 237–238
evolution, 430–43
fidelity of replicative polymerases, 245–246
herpes simplex virus, 502–503, 506–507
inhibitors, 246
poxvirus, 529–530, 533
structure of replicative polymerases
 overview, 239–240
 quaternary structure
 Archaea, 242–244
 bacteria, 240–242
 eukaryotes, 244–245
subunits of replicative polymerases, 238
translesion synthesis polymerases. See Translesion synthesis
DNA polymerase I, 237, 241–242
DNA polymerase II, 254, 257, 261
DNA polymerase III, 8, 240, 242, 257
DNA polymerase IV, 254, 257
DNA polymerase V, 256–257, 262, 264
DNA polymerase α, 244, 383–384
DNA polymerase B, 243
DNA polymerase β, 241
DNA polymerase C, 246
DNA polymerase δ, 188–190, 244–246, 383–384
DNA polymerase ε, 188, 244–245, 383–384
DNA polymerase γ, mutation and disease, 329–331
DNA polymerase η, 258, 261–262, 279
DNA polymerase ζ, 246, 258
Dormant origin. See Origin
Double-strand break. See DNA damage
Dpb2, 245
Dpb3, 245
Dpb4, 245
Dpb11, 281, 315, 370
Drc1, 85–86, 367
DS, 515–518
DUE-B, pre-initiation complex formation role, 89
Dup, 407

E
E1. See Human papillomavirus
E1A, 493
E2. See Human papillomavirus
E2F1, endocyte role, 401–403, 406
E6. See Human papillomavirus
E7. See Human papillomavirus
EBNA1, 513–518
EBV. See Epstein–Barr virus
ELYS, 39
Endocyte. See Endoreplication
Endoreplication
 endocycles
 CDK suppression during G phase, 404–405
cell types, 400–401
core oscillator, 401–403
cyclin A role, 405–406
driving by cyclin E-CDK2 oscillation, 401
endoreplication suppression during endocycles, 403–404
origin recognition complex role, 405
initiation
 Drosophila, 406–407
mammals, 408–410
overview, 399–400
plant development, 388–390
prospects for study, 410
Epigenetics
 histone modifications in state maintenance, 204–207
plant replication origins, 386
replication fork dynamics, 206–207
replication timing, developmental control, and stable epigenetic states, 130–131
Epstein–Barr virus (EBV)
FR, 514–515
origin recognition complex, 517
origins of replication
 DS, 515–518
oriLy and supporting proteins, 519–522
oriP
 features, 513–514
supporting proteins, 516–518
Raji ori, 518
Est1, 299–300

F
FANC genes, 278, 320
FEN1. See Flap endonuclease 1
PGF4, 408
Fis, 18
Flap endonuclease 1 (FEN1), 395, 417, 431
 Okazaki fragment processing, 189–192
posttranslational processing, 192–193
FR, 514–515
Fzr, 403

G
Gcn5, 210
GEM, 382, 387
GEMCI, 389, 70
Geminin, 409–410
antireplication mechanisms, 315–316
cancer marker, 334
Cdt1 interactions, 369
Geminivirus, DNA replication, 390
Gene databases, table, 539
Genomic instability. See Cancer
Genotoxic stress, DNA replication control, 364
gidA, 348
GINS, 5, 7–9, 311–312, 335, 383
cyclin-dependent kinase-dependent association of
GINS with origins, 84–85
evolution, 424
MCM interactions, 102

H
Haspin, 232
Hbo1, 210, 368
Hda, 350–354
Hdac11, 368
Helicase. See also specific helicases
activation. See Pre-initiation complex
herpes simplex virus, 503
loading
comparison between bacteria, Archaea, and
eukaryotes, 4–6, 73–74, 73–74
Escherichia coli, 62–66
eukaryotes, 67–73, 361–362
overview, 61–62
origin
firing and activation, 362
licensing and helicase loading, 361–362
poxvirus, 530–531
Herpes simplex virus (HSV)
classification, 499
DNA replication
auxiliary factors, 504–505
concatamer formation, 507–508
DNA polymerase, 502–503, 506–507
elongation, 506–507
genes and functions, 504
helicase, 503
ICP8 role, 500–502, 505–506
initiation, 505–506
origin, 500
origin-binding protein, 503–504
primase, 503
prospects for study, 509
sites, 508
therapeutic targeting, 508–509
genome features, 499–500
HIRA, 200, 202
Histones. See Chromatin
HJURP. See Holliday junction recognition protein
HLTF, 278
Holliday junction, resolution in break-induced
replication, 54
Holliday junction recognition protein (HJURP), 202
HP1, 367
HPV. See Human papillomavirus
Hsk1, 366
HSV. See Herpes simplex virus
Human papillomavirus (HPV)
clinical spectrum of infection, 469–470
DNA replication
E1 role, 472–473
E2 role, 472–473
initiation in G2, 475–476
S-phase reentry induction by E7, 473–475
E6
life cycle role, 476–427
oncoprotein properties, 474
epithelial cell organotypic culture, 474–475
genoome organization, 471–472
host tissue, 471
keratinocyte organotypic culture, 475
management, 470
oncogenesis
DNA integration in cervical cancer and clonal
selection, 478–479
E1 role, 479
E2 role, 479
immune surveillance downregulation by
oncoproteins, 479–480
overview, 470–471
prospects for study, 480
virus attributes and models, 477–478
productive program modulation
p21, 477
p27, 477
pseudovirions, 475
Hus1, 318

I
ICP8, 500–502, 505–506
INDHS, 18

K
Ki67, 334
Ku, 319
Ku70, 454
Ku86, 454

L
Last universal common ancestor (LUCA), 416
LexA, 253
Licensing. See Origin
Index

Licensing checkpoint, 38–40
LIG1, 385–386
LR1, 517
LR2, 517
LUCA. See Last universal common ancestor

M
MCB1, 367
Mcb1, 366
MCM complex. See Minichromosome maintenance complex
Mcm2, 210
MCM2–7
antirereplication mechanisms, 314–315
cancer markers
advantages, 334–335
cervical cancer, 335–337
colorectal cancer, 337–338
detection of cells, 335
sensitivity, 332–333
gate function, 101–101
licensing checkpoint, 38, 40
loading
ATP role, 71
comparison with bacteria, 73–74
components, 68–70
gate function and implications for loading, 71–72
initial recruitment, 69
model, 72–73, 103
origin recognition, 69
overview, 67–68
recruited helicases, 70
regulation and dynamics, 72
structure of loaded helicase, 70–71
mutation and disease, 331–332
organization, 100–101
overview, 4–5
plants, 382
Mcm4, mutation and disease, 331–332
MCM8, 383
MCM9, 383
MCM10, 7, 383, 425, 427
Mcm10, 85, 278, 277, 370–371, 425, 427
Meier–Go¨rlin syndrome, 331
Microhomology-mediated break-induced replication (MM-BIR), 56–57
Microsatellite instability, cancer studies, 320–321
Minichromosome maintenance (MCM) complex. See also MCM2–7
cancer markers
advantages, 334–335
cervical cancer, 335–337
colorectal cancer, 337–338
detection of cells, 335
sensitivity, 332–333
evolution, 423–424
GINS interactions, 102
structure in Archaea
hairpins, 97–99
intersubunit communication, 99–100
overview, 95–97
Minute virus of mice. See Parvovirus
miC, 348
Mirbavir, 508–509
Mitochondrial DNA (mtDNA), replication
coupled leading- and lagging-strand synthesis, 447–448
genome features, 441–442
initiation, 448–450
machinery, 451
mutant DNA replication and selection, 451–452
nuclear DNA mutations affecting, 452
prospects for study, 452–453
RitalicOLS model of RNA incorporation, 444–446, 449
strand-displacement mechanism, 442–444
termination, 450–451
MLN4924, 321
MM-BIR. See Microhomology-mediated break-induced replication
Mrc1, 9
MRE11, 464
Mre11, 276, 297–298
mtDNA. See Mitochondrial DNA
mTERF, 452
MukB, 230
Mus81, 280
MYB, 367

N
NAP1, 201
NASP. See Nuclear autoantigenic sperm protein
Nbs1, 298
NFI, 492
Nomenclature
replication proteins in different organisms, 541–550
style conventions for genes and proteins, 540
Notch, 406
NS1, 460
Nucleic acid [DNA, RNA], replication program structure, 111–114
Nucleosome.
Nuclear autoantigenic sperm protein (NASP), 202
Nucleoid
chromosome organization in bacteria, 108–111
spatial organization of replication, 111–114
Nucleosome. See Chromatin
Nucleus
replication program structure, 114
replication visualization, 114–115
spatial and temporal organization of replication, 112–114

NuFF, 434

O

OBP. See Origin-binding protein

Oct-1, 489, 492

Okazaki fragment

coordination of leading- and lagging-strand synthesis, 154–158

lagging-strand template lesions, 272

overview, 8, 148, 185

priming transfer to DNA polymerase, 188

priming of lagging strand, 187–188

processing

fragment size effects, 189

long flap pathway, 190

long patch base excision repair similarities, 192

minimal enzymes, 188–189

posttranslational processing of replication proteins

acetylation, 193–194

phosphorylation, 192–193

short flap pathway, 189–190

RNase H function in prokaryotes and eukaryotes, 186–187

ORC. See Origin recognition complex

ORC1, 25, 39, 331

Orc1, 368, 382, 405

Orc2, 313, 405

ORC4, 39, 69, 331

ORC6, 39, 68, 331

Orc6, 366

ORCA, 69

OriC, 20–21, 62

Escherichia coli

sequestration of origin, 346–348

transcription at or near origin, 348

DnaA binding. See DnaA

Origin

Archaea, 20–21

bacteria

pre-replication complex assembly role, 18, 20

sequence comparison between species, 17–20

chromatin regulation

histone modification, 209–211

nucleosome positioning in origin selection, 211–212

overview, 208–209

comparison between bacteria, Archaea, and eukaryotes, 2–4

dormant origins

licensing checkpoint, 38–40

overview, 33–35

replication factories, 36–37

Escherichia coli

sequestration of origin, 346–348

transcription at or near origin, 348

Epstein–Barr virus

DS, 515–518

oriLyt and supporting proteins, 519–522

Raji ori, 518
eukaryotes

metazoa

chromatin organization, 25–26

organization, 23–24

sequence specificity, 24

overview, 21

yeast

chromatin environment, 22–23

sequence specificity, 21–22

firing in eukaryotes

helicase activation, 362

metazoa, 370–371

plants, 387–388

Saccharomyces cerevisiae

cyclin-dependent kinase control, 365

DDK control, 365–366

Schizosaccharomyces pombe, 367

helicase loading. See Helicase

herpes simplex virus, 500

licensing in eukaryotes

cyclin-dependent kinase control

Saccharomyces cerevisiae, 364–365

Schizosaccharomyces pombe, 366–367

helicase loading, 361–362

metazoa, 368–370

plant properties, 386–387

recognition regulation in metazoa, 367–368

Origin-binding protein (OBP), herpes simplex virus, 503–504

Origin recognition complex (ORC)

antireplication proteins, 313

archaeal and eukaryotic replication system comparison, 417

decocycling role, 405

Epstein–Barr virus, 517

evolution, 418–423

overview, 4, 16, 18

oriGNAI3, 36

oriLyt, Epstein–Barr virus

features, 519–520

supporting proteins, 520–522

oriP, Epstein–Barr virus

features, 513–514

supporting proteins, 516–518

Orp2, 313, 366

Orp4, 366

Index

P
p16, 478
p21, 405, 408–409, 477
p27, 477
p57, 405, 408–409
p300 acetylase, 193
PACE12, 434
ParA, 353
ParB, 353
PARP. See Poly(ADP-ribose) polymerase
ParS, 353
Parvovirus
classification, 458
DNA replication mechanism, 457–458
genome, 457
genomic diversity, 458–462
induced DNA damage responses, 463–465
productive infection establishment, 462–463
PCNA. See Proliferating cell nuclear antigen
Pds5, 229
Pif1, 190–192
PiSL, 428
Plk1, 230, 313
Poly(ADP-ribose) polymerase (PARP), 278
Pot1, 294, 301–302
Poxvirus
DNA packaging, 533–535
DNA precursor metabolism, 528–529
DNA replication
A20, 531
concatemer resolution, 532–533
data ligase, 532–533
data polymerase, 529–530, 533
helicase-primase, 530–531
models, 533
prospects for study, 535
single-stranded DNA-binding protein, 532
sites, 527–528
therapeutic targeting, 535
threonine protein kinase, 531–532
timing, 527
uracil DNA glycosylase, 531
genome, 528–529
overview, 527
recombination, 533
Poz1, 301
Pre-IC. See Pre-initiation complex
Pre-initiation complex (Pre-IC)
metazoan formation
DUE-B, 89
GEMC1, 89
overview, 86–87
RecQ4, 88–89
regulation, 89–90
TopBP1, 87–88
Treslin/Ticrr, 88
overview of formation, 81–82, 90–91
Saccharomyces cerevisiae formation
components, 82–83
cyclin-dependent kinase-dependent association of GINS with origins, 84–85
DDK-dependent association of Cdc45 with origins, 83–84
Mcm10 loading, 85
Schizosaccharomyces pombe formation, 85–86
Pre-RC. See Pre-replication complex
Pre-replication complex (Pre-RC)
assembly inhibition, 310
cell cycle regulation, 364
evolution, 418–423
mutations and disease, 331
plants, 382
PriA, 47–48, 52, 276–277, 281
PriC, 276–277
Primase
archael and eukaryotic replication system
comparison, 417
evolution, 428–429
herpes simplex virus, 503
poxvirus, 530–531
priming comparison between bacteria, Archaea, and eukaryotes, 6
transfer to DNA polymerase, 188
Proliferating cell nuclear antigen (PCNA), 11, 188–189, 275, 334, 367
Cdt1 interactions, 315
dendocyte role, 402
evolution, 429–430
FEN1 interactions, 189
loading. See Clamp loader
plants, 384–385
posttranslational processing, 192
replication fork epigenetics, 20
structure
...crystal structures, 165–167
...solution structures, 167–168
...unloading, 176
...Y-family polymerase interactions, 262

R
Rad1, 318
Rad9, 318
Rad17, 318
RAD30, 258, 262
Rad50, 297–298
RAD51, 276, 280, 390
Rad51, break-induced replication in yeast
double-strand break dependent replication, 49–50
double-strand break independent replication, 50–51
initiation of DNA synthesis, 52–53
recombination-mediated establishment of replication, 52
transformation, 49
Rad52, 279
Raji ori, 518
Rap1, 294–295, 300–301
RAPADILLINO syndrome, 328–329
Rat1, 294
Raz1, 294
Rh, endocycle role, 403
RecA, 253, 256, 281
RecBCD, 47–48
RecJ, 425–426
recQ helicases, mutation in disease, 328–329
Regulatory inactivation of DnaA (RIDA), 348, 350–352
ReiA, 353
Rep, 276
Replication cycle
eubacteria, 343–346
eukaryotes, 361–362
Replication factor C (RFC), 9, 158, 188, 279
archaeal and eukaryotic replication system comparison, 417
evolution, 430
plants, 385
structure, 170
Replication fork dynamics
cromatin disruption, 202–204
coordination of leading- and lagging-strand synthesis, 154–158
epigenetics, 206–207
experimental techniques
fluorescence imaging, 149
imaging in vivo, 149–150
mechanical stretching, 148–149
histones, 199–200
overview, 47–48
plants, 383–386
prospects for study, 158–159
replisome architecture, 150–154
Replication fork rescue
breakdown consequences, 276
cancer, 319–320
lagging-strand template lesions, 272
leading-strand template lesions, 272–276
overview, 271
pathways for reactivation
direct restart, 277–278
recombination-mediated restart, 278–281
remodeling of fork, 278
prospects for study, 281
Replisome origin. See Origin
Replication protein A (RPA), 9, 158, 188, 190, 193, 319, 385, 417, 432–434
Replication timing
cromatin
chromatin interaction map studies of timing, 134–135
G1 determinant loss before G2, 133
protein roles, 131–132
replication foci as cytogenetic unit of timing, 133–134
spatial compartmentalization of early and late replication, 132
subnuclear position changes and cell fate transitions, 133
chromosome structure and replication timing, 115–116
developmental control and stable epigenetic states, 130–131
genome size effects, 126
genome-wide replication profiles
interpretation, 122, 126–128
species and cell lines in studies, 123–127
nucleus and spatial and temporal organization of replication, 112–114
overview, 121–122
sequence dependence, 128–130
transcription relationships, 130
Replisome
architecture and replication fork dynamics, 150–154
comparison between bacteria, Archaea, and eukaryotes, 7–9
Rev1, 258, 261
Rev3, 258
RFC. See Replication factor C
RIDA. See Regulatory inactivation of DnaA
Rif1, 132, 300
Rif2, 300
RIP1, 505
RitalicOLS. See Mitochondrial DNA
RNase H, 186–187, 445
Rothmund-Thompson syndrome, 328–329
RPA. See Replication protein A
Rrm3, 296
Rtt107, 281
RuvC, 532–533
Index
S
Scc1, 232
Separase, 231–232
SeqA, 346–347
Set8, 368
Sic1, 364
Single-stranded DNA-binding proteins (SSBs)
evolution, 432–434
poxvirus, 532
SirA, 353
Sister chromatid adhesion

559
Sister chromatid adhesion (Continued.)

- acetylation, 227–228
- attachment regions on genome, 224–226
- coevolution of acetylation and Wapl-mediated release from DNA, 230–231
- CTCF recruitment and chromatin structure effects, 225–226
- loading onto DNA, 221, 223–224
- removal from mitotic chromosomes, 229
- separase cleavage, 231–232
- sister chromatid adhesion role, 226–227
- sororin stabilization, 228–229
- structure, 220–222
- Wapl in release from DNA, 229–230

- double-strand break induction, 229
- essential proteins, 227
- overview, 219–220
- prospects for study, 232–233
- sororin role, 228–229

- Six4, 280
- Six2, 300
- Skp2, 314
- Sld2, 7, 315, 365, 428
- Sld3, 7, 85–86, 315, 365–367, 427
- SLD7, 367
- Smc3, 232
- Sna41, 366
- Soj, 353
- Sororin, 228–229
- S-phase
 - extended S-phase rationale, 138–139
 - human papillomavirus E7 and reentry induction, 473–474
 - progression regulation, 116–118
 - sister chromatid adhesion. See Sister chromatid adhesion
- SSBs. See Single-stranded DNA-binding proteins
- Stn1, 213, 302
- String, 406
- SV40, replication overview, 187

T

- Taz1, 296, 301
- Tbf1, 298
- Tel1, 297–298, 300–301
- Telomerase
 - components, 295
 - recruitment, telomere extension, and length homeostasis
 - mammals, 301–303
 - *Saccharomyces cerevisiae*, 298–300
 - *Schizosaccharomyces pombe*, 300–301
- Telomere components

mammals, 291–292, 294–295
Saccharomyces cerevisiae, 288–290, 293–294
Schizosaccharomyces pombe, 290, 294

history of study, 287–288
maintenance in break-induced replication, 51–52
replication. See also Telomerase
end resection, 297–298
prospects for study, 303
semiconservative replication, 296–297

Temporal transition region (TTR), 23, 122, 126, 128
Tel1, 213
TERRA, transcription, 294–295
TFAM, 452
Thymidine kinase, 504, 528
Timing. See Replication timing
Tin2, 294
Tlc1, 300
TLS. See Translesion synthesis
TopBP1, pre-initiation complex formation role, 87–88
Topoisomerase, vaccinia virus, 533
Tpp1, 294, 301–303
TPR1, 490–491
TPR2, 490–491

Translesion synthesis (TLS)
 - DNA damage-induced regulation of gene expression in bacteria, 253
 - *Escherichia coli*
 - DNA polymerase II, 254, 257
 - DNA polymerase IV, 254, 257
 - DNA polymerase V orthologs, 256–257
 - early models, 254
 - ultraviolet mutagenesis model, 255
 - Umu protein characterization, 254, 256
 - polymerases
 - Archaea, 257–258
 - domain organization, 263
 - eukaryotes, 258–259
 - evolutionary conservation, 258–259
 - overview, 9, 251, 253
 - regulation, 261–262
 - structural insights and mutagenic specificity, 259–261
 - types, 252–253
 - prospects for study, 262, 264
 - replication fork rescue. See Replication fork rescue
 - Treslin/Ticrr, pre-initiation complex formation role, 88
 - Trf1, 294, 296
 - Trf2, 294, 298
 - TTR. See Temporal transition region
 - TWINKLE, mutation and disease, 329–331, 452

U

- UmuC, 254, 258
- UmuD', 254
URI, 516
Uracil DNA glycosylase, 505, 531

V
Vaccinia virus. See Poxvirus

W
Wapl, 229–231
WEN. See Werner syndrome

Werner syndrome (WRN), 328
WSTF, 203

X
Xrs2, 297

Y
YabA, 354
Y-family polymerases. See Translesion synthesis