ONE OF THE CENTRAL THEMES OF BIOLOGY IS the constant change and transformation of most biological systems. In fact, this dynamic aspect of biology is one of its most fascinating characteristics, and it draws generation after generation of students absorbed in understanding how an organism develops, how a cell functions, or how the brain works. This series of manuals covers imaging techniques in the life sciences—techniques that try to capture these dynamics. The application of optical and other visualization techniques to study living organisms constitutes a direct methodology to follow the form and the function of cells and tissues by generating two- or three-dimensional images of them and to document their dynamic nature over time. Although it seems natural to use light to study cells or tissues, and microscopists have been doing this with fixed preparations since van Leeuwenhoek's time, the imaging of living preparations has only recently become standard practice. It is not an overstatement to say that imaging technologies have revolutionized research in many areas of biology and medicine. In addition to advances in microscopy, such as differential interference contrast or the early introduction of video technology and digital cameras, the development of methods to culture cells, to keep tissue slices alive, and to maintain living preparations, even awake and behaving, on microscopes has opened new territories to biologists. The synthesis of novel fluorescent tracers, indicator dyes, and nanocrystals and the explosive development of fluorescent protein engineering, optogenetical constructs, and other optical actuators like caged compounds have made possible studies characterizing and manipulating the form and function of cells, tissues, and circuits with unprecedented detail, from the single-molecule level to that of an entire organism. A similar revolution has occurred on the optical design of microscopes. Originally, confocal microscopy became the state-of-the-art imaging approach because of its superb spatial resolution and three-dimensional sectioning capabilities; later, the development of two-photon excitation enabled fluorescence imaging of small structures in the midst of highly scattered living media, such as whole-animal preparations, with increased optical penetration and reduced photodamage. Other
nonlinear optical techniques, such as second-harmonic generation and coherent anti-Stokes Raman scattering (CARS), now follow and appear well suited for measurements of voltage and biochemical events at interfaces such as plasma membranes. Finally, an entire generation of novel “superresolution” techniques, such as stimulated emission depletion (STED), photoactivated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM), has arisen. These techniques have broken the diffraction limit barrier and have enabled the direct visualization of the dynamics of submicroscopic particles and individual molecules. On the other side of the scale, lightsheet illumination techniques allow the investigator to capture the development of an entire organism, one cell at a time. Finally, in the field of medical imaging, magnetic resonance scanning techniques have provided detailed images of the structure of the living human body and the activity of the brain.

This series of manuals originated in the Cold Spring Harbor Laboratory course on Imaging Structure and Function of the Nervous System, taught continuously since 1991. Since its inception, the course quickly became a “watering hole” for the imaging community and especially for neuroscientists and cellular and developmental neurobiologists, who are traditionally always open to microscopy approaches. The original manual, published in 2000, sprang from the course and focused solely on neuroscience, and its good reception, together with rapid advances in imaging techniques, led to a second edition of the manual in 2005. At the same time, the increased blurring between neuroscience and developmental biology made it necessary to encompass both disciplines, so the original structure of the manual was revised, and many new chapters were added. But even this second edition felt quickly dated in this exploding field. More and more techniques have been developed, requiring another update of the manual, too unwieldy now for a single volume. This is the reasoning behind this new series of manuals, which feature new editors and a significant number of new methods. The material has been split into several volumes, thus allowing a greater depth of coverage. The first book, Imaging: A Laboratory Manual, is a background text focused on general microscopy techniques and with some basic theoretical principles, covering techniques that are widely applicable in many fields of biology and also some specialized techniques that have the potential to greatly expand the future horizon of this field. A second manual, Imaging in Neuroscience: A Laboratory Manual, keeps the original focus on nervous system imaging from the Cold Spring Harbor Imaging course. A third volume, Imaging in Developmental Biology: A Laboratory Manual, now solely deals with developmental biology, covering imaging modalities particularly suited to follow developmental events. There are plans to expand the series into ultrastructural techniques and medical-style imaging, such as functional magnetic resonance imaging (fMRI) or positron emission tomography (PET), so more volumes will hopefully follow these initial three, which cover mostly optical-based approaches.

Like its predecessors, these manuals are not microscopy textbooks. Although the basics are covered, I refer readers interested in a comprehensive treatment of light microscopy to many of the excellent texts published in the last decades. The targeted audience of this series includes students and researchers interested in imaging in neuroscience or developmental or cell biology. Like other CSHL manuals, the aim has been to publish manuals that investigators can have and consult at their setup or bench. Thus, the general philosophy has been to keep the theory to the fundamentals and concentrate instead on passing along the little tidbits of technical knowledge that make a particular technique or an experiment work and that are normally left out of the methods sections of scientific articles.

This series of manuals has only been possible because of the work and effort of many people. First, I thank Sue Hockfield, Terri Grodzicker, Bruce Stillman, and Jim Watson, who conceived and supported the Imaging course over the years and planted the seed blossoming now in these manuals and, more importantly, in the science that has spun out of this field. In addition, the staff at CSHL Press has been exceptional in all respects, with special gratitude to John Inglis, responsible for an excellent team with broad vision, and David Crotty, who generated the ideas and enthusiasm behind this new series. Also, Inez Sialiano, Mary Cozza, Michael Zierler, Kaaren Janssen, Catriona...
Simpson, Virginia Peschke, Judy Cuddihy, Martin Winer, Kevin Griffin, Kathleen Bubbeo, Lauren Heller, Susan Schaeffer, Jan Argentine, and Denise Weiss worked very hard, providing fuel to the fire to keep these books moving, and edited them with speed, precision, and intelligence. More than anyone, they are the people responsible for their timely publication. Finally, I honor the authors of the chapters in these books, many of them themselves past instructors of the CSH Imaging course and of similar imaging courses at institutions throughout the world. Teaching these courses is a selfless effort that benefits the field as a whole, and these manuals, reflecting the volunteer efforts of hundreds of researchers, who not only have taken the time to write down their technical knowledge but have agreed to generously share it with the rest of the world, are a beautiful example of such community cooperation. As Leibniz foresaw, “lens grinding” is a profession that is indeed meaningful and needs the training of young people.

— RAFAEL YUSTE
Preface to Book 1

The purpose of this book is to serve as the introduction to, and common base for, a series of laboratory manuals that cover different aspects of biological imaging. At launch, this series includes a general manual on imaging techniques, a second one on neuroscience applications, and a third one on developmental biology. This first book covers basic microscopy techniques and also some more advanced ones that have not yet become commonplace in the laboratory but that are included because of their great potential.

In organizing the material for this first manual I was aware of the difficulty inherent in splitting this dynamic field into manageable sections. The techniques discussed here span many scales and applications and are based on many different optical principles and on combinations of them. Science is fluid and the reader should be aware that the sections of the book are merely artificial placeholders to help the reader find the relevant material faster.

The book is divided into three main sections. The first (Instrumentation) focuses on the hardware and covers the basics of light microscopy, light sources, cameras, and image processing. This section also covers some novel technologies, such as liquid crystal, acousto-optical tunable filters, ultrafast lasers, and grating systems; discusses different forms of imaging, from DIC to confocal to two-photon—techniques that are becoming relatively standard in biological research institutes; and ends with a chapter that discusses the challenges of making the microscope environment compatible with the survival of common biological preparations.

The second section (Labeling and Indicators) focuses on labeling methods to stain cells, organelles, and proteins or to measure ions or molecular interactions. It includes some well-established methods, such as immunological and nonimmunological staining, and newer genetic engineering techniques where one tags a protein directly or indirectly with a fluorophore. This section also covers fluorescence and luminescent indicators of several intracellular biochemical pathways, with particular emphasis on measurements of calcium dynamics.

The third section of the manual (Advanced Microscopy) covers less established techniques, many of them at the forefront of imaging research. This section is organized by scale, covering first imaging of molecules, then imaging of cells, and then imaging of tissues or entire organisms. In addition, this section has a separate set of chapters dealing with strategies to perform fast laser imaging, an area of rapid development that aims to enhance the slow time resolution arising from the serial scanning by laser microscopes. Finally, there are three chapters on the use of caged compounds, photocatalytic actuators that enable the optical manipulations of cells and tissues in situ. The ability to optically alter the concentration of a substance in a small region of a cell or a tissue is turning imaging from a descriptive technique into an experimental one.

The manual ends with a series of appendices, including a glossary of imaging terms, useful information on spectra, lenses, and filters, and instructions for handling imaging hardware safely.

Besides the people and institutions already acknowledged in the series preface, a separate thanks goes to the funding agencies that have made my work as “imagist” possible over the years.
research of my group has been supported by the generosity of the National Eye Institute, the Howard Hughes Medical Institute, and the Kavli Foundation. Columbia University, and its Department of Biological Sciences and its Neuroscience Program, has been a wonderful environment in which to work and pursue my dreams as a researcher and scholar. I would also like to thank the members of my laboratory and, in particular, Darcy Peterka, Kira Poskanzer, Roberto Araya, and Alan Woodruff, who helped me in the final copy editing of all the chapters of this and the other books in the series. In addition, I especially thank Fred Lanni and Arthur Konnerth for co-editing the first two editions of the manual and for all the wonderful late-night discussions when we ran the CSH course. Finally, as they say in Basque, hau etxekoentzat da (this here is for the people of the house). I dedicate this book to my etxekoak, my extended group of family and friends, because it is from them that I gather my strength.

— RAFAEL YUSTE
Index

A
Abbe, Ernst, 10
Abbe model, 10–14
Abbe resolution limit, 49, 738, 740
Abbe sine condition. See Sine condition
Aberration
chromatic
in confocal microscopy, 107
in multiphoton microscopy, 107
description of, 51
spherical
caused by refractive index mismatch between immersion fluid and specimen, 17
description of, 51
in 3D STORM imaging, 566–567
oil-immersion objectives and, 272
Absolute fluorescence intensity, calibration of, 409, 412
Acetone
for fixation of cells and tissues, 161
permeabilization of cells, 162
Acetylcholine receptor
labeling using rhodamine α-bungarotoxin, 223–224
nicotinic, 875, 876t–877t, 877
ACLAR plastic, 165
Acoustic-optic device, high-speed two-photon imaging and, 832–835, 834f, 837
Acousto-optic deflectors (AODs), 93–94, 839, 842, 843, 845, 846f
Acousto-optic modulator (AOM), 93–94, 839, 842, 843, 845, 846f
Outer-dispersion (ANDi) lasers, 140
α-bungarotoxin, rhodamine conjugate of, 223–224
α-carboxyl-2-nitrobenzyl (CNB) protecting group, 871
Alternating laser excitation (ALEX)/single-molecule FRET (smFRET)
data analysis, 493–496
ALEX-based burst search, 494
ALEX-related histograms, 494
bleaching and blinking, 495, 495f
burst search, 493
detection and excitation volume mismatch, 496
fixed-bin burst search, 493
FRET efficiencies, measurement of, 496
random coincidence of diffusing species, 495–496
shot noise, 494–495
sliding burst search, 493
description, 490
design principles for setup, 492–493
emission, 492–493, 493f
excitation, 492
future prospects, 496–497
protocols
alignment of smFRET/ALEX setup, 501–502
assembling the µs-ALEX setup, 498–500, 499t, 500f
sample preparation and data acquisition for µs-ALEX, 503–505
suppliers of parts used for constructing ALEX microscope modules, 499f
theory, 490–492, 491f
Alternative antibody dilution solution with NDS (recipe), 717
Alternative blocking solution with NGS (recipe), 717
Aminoethylcarboxymethyl (AECM)-ficoll, 225–226
3-aminopropyltriethoxysilane (aminopalkyl silane), 168
4-aminopyridine, 898

Page references followed by f denote figures; page references followed by t denote tables.
Aminothiophene dyes, 730f
Analyzer

differential interference contrast (DIC)
 microscopy, 25–30, 26f, 73, 76
 polarized light microscopy, 692–693
ANDi (all-normal-dispersion) lasers, 140
Andor iQ, 511
ANEPI dyes, 721–722, 727, 731
Angiogenesis, photoacoustic imaging of, 813, 817–818
Anisotropy
 of absorption coefficient (dichroism), 683
 as consequence of molecular order, 683–684
Antialiasing filters, 144
Antibodies. See also Immunofluorescence
 elution of, 707–709
 immunostaining and antibody elution, 707–709, 707f
 production of arrays, 705–706
 recipes, 717–719
 rodent brain tissue fixation and embedding, 702–704
 semiautomated image alignment, 715–716
Arteriole, rhythmic components of dilation and
 contraction of, 572–573
Argon-ion laser
 for TCSPC-FLIM, 645
 for smFRET, 493
 in fluorescence correlation spectroscopy (FCS)
 in knocking or pulse force mode, 591
 in geometrical dilation, 590–591, 590f
 in contact mode, 589–590
 in air, 590f, 592
 in aqueous media, 592–593, 593f
 description, 163
 basics of, 585–586
 future directions of, 594
 history of, 586
 imaging biological samples, 592–594
 in air, 590f, 592
 in aqueous media, 592–593, 593f
 viruses, 593–594, 593f
 implementation, 586–591, 587f
 contact mode, 589–590
 dynamic modes, 591
 geometric dilation, 590–591, 590f
 interaction between tip and the sample
 surface, 588–589, 588f
 jumping or pulse force mode, 591
 principles of, 586–588, 587f
ATP assays, firefly luciferase use in, 370
Autocorrelation, in fluorescence correlation
 spectroscopy (FCS), 613–614, 615
AutoDeblur software, 338
Autofluorescence, 370
 description, 163
 from endogenous cellular molecules, 183
 FCS measurements in living cells and, 622
 fluorescence speckle microscopy (FSM) and, 671
 glutaraldehyde fixation and, 160
 imaging with ultramicroscopy, 765
 mobile, 420
 reduction with sodium borohydride, 160, 163, 183
 subtraction of, 420
AutoQuant (software), 761
Avalanche photodiodes (APD)
 for imaging with ultramicroscopy, 765
 bulb life time, 241
 advantages of, 117–122
 characteristics of fiber-coupled, 118–120
 fiber delivery, 120
 spectral purity, 118–119
 spectrum, 118
 stability, 119–120
 usable output power, 119
 experimental setup, 120–122
 dynamic performance, 121–122
 illumination system, 120–121, 121f
 monochromator, 121
 safe operation, 909–910
 spectrum of, 117, 118
 Argon-ion laser
 FRAP, 656, 656f
 SFA-FRAP, 661
 Arrays, production of, 705–706
 Array tomography, 697–719
 future directions, 717
 overview, 697–698
 procedures, 698–701
 depth invariance, 699–700
 multiplicity, 700, 700f
 resolution, 699
 sequence of steps, 698–699, 698f
 volume field of view, 701
 protocols
 imaging stained arrays, 710–714, 713f
 immunostaining and antibody elution, 707–709, 707f
 production of arrays, 705–706
 recipes, 717–719
 rodent brain tissue fixation and embedding, 702–704
 semiautomated image alignment, 715–716
Arteriole, rhythmic components of dilation and
 contraction of, 572–573
Arteriole, rhythmic components of dilation and
 contraction of, 572–573
Arteriole, rhythmic components of dilation and
 contraction of, 572–573
Arylsulfonic acid, for clearing of specimens for
 TIRFM, 603
BAPTA
 for calibration of fura-2 setup, 420–425
 chelators
 modification of affinity for Ca2+, 395–397, 397f
 structure of, 396f
 BCECF (2′,7′-bis-(2-carboxyethyl)-5-(and-6)-
 carboryllyoxyfluoresein), 433
 B cells, adoptive transfer by injection and, 276f
 Bcl-2, 391
 Bead ratio, 422
 Beam splitter, 905f, 906
 Beetle luciferin, 370f, 373
 Bell, Alexander G., 809
 Benzodiazepine receptor, 223
 Benzyl alcohol, for clearing of specimens for
 ultramicroscopy, 767–770
 Benzyl benzoate, for clearing of specimens for
 ultramicroscopy, 767–770
 Bertrand lens, 25
 β-galactosidase, fluorescence imaging of gene
 expression of, 454
 β-lactamase, FRET and, 388f, 389f, 392
 Bevacizumab, 254
 BHK-21 cell culture medium (recipe), 297
 Biospecific C126 indicator, 297
 Biospecific labeling of tetracysteine-tagged
 proteins
 future directions, 297
 overview, 291–292, 297
 protocol, 293–296
 Bicarbonate buffer (recipe), 806
 Limolecular fluorescence complementation
 (BiFC) analysis, 299–324
 advantages and limitations of, 301, 309
 multicolor analysis of protein interactions
 with alternative partners, 301, 310–318
 absolute and relative competition
 approaches to quantifying relative efficiencies of complex formation,
 313–314, 317
 controls, 311
 design of constructs for, 311
 efficiency of complex formation, analysis of,
 311
 fluorescent protein fragments, choice of, 311
 Avidin, quantum dot conjugation to, 580, 582
 Axially resolved microscopy, 861–862
 Axial magnification, 5–6
 Axial resolution
 condenser aperture and, 13–14, 13f
 in fluorescence microscopy, 39
 in temporal focusing, 863–884, 864f
 Axial scanning, rapid, 866
 Axiovision software, Zeiss, 711, 714, 715
 Azimuth, defined, 693
 BACB clearing solution, 767–770
 Background light, sources of, 51–52
 Band-limited signals, 144
 Band-pass filter, 34, 52, 92, 113, 272
 for SHG detection, 724
 in spatial light modulator (SLM) microscopy, 851f, 852
 in TIRFM, 603
 BAPTA
 for calibration of fura-2 setup, 420–425
 chelators
 modification of affinity for Ca2+, 395–397, 397f
 structure of, 396f
 BCECF (2′,7′-bis-(2-carboxyethyl)-5-(and-6)-
 carboryllyoxyfluoresein), 433
 B cells, adoptive transfer by injection and, 276f
 Bcl-2, 391
 Bead ratio, 422
 Beam splitter, 905f, 906
 Beetle luciferin, 370f, 373
 Bell, Alexander G., 809
 Benzodiazepine receptor, 223
 Benzyl alcohol, for clearing of specimens for
 ultramicroscopy, 767–770
 Benzyl benzoate, for clearing of specimens for
 ultramicroscopy, 767–770
 Bertrand lens, 25
 β-galactosidase, fluorescence imaging of gene
 expression of, 454
 β-lactamase, FRET and, 388f, 389f, 392
 Bevacizumab, 254
 BHK-21 cell culture medium (recipe), 297
 Biospecific C126 indicator, 297
 Biospecific labeling of tetracysteine-tagged
 proteins
 future directions, 297
 overview, 291–292, 297
 protocol, 293–296
 Bicarbonate buffer (recipe), 806
 Limolecular fluorescence complementation
 (BiFC) analysis, 299–324
 advantages and limitations of, 301, 309
 multicolor analysis of protein interactions
 with alternative partners, 301, 310–318
 absolute and relative competition
 approaches to quantifying relative efficiencies of complex formation,
 313–314, 317
 controls, 311
 design of constructs for, 311
 efficiency of complex formation, analysis of,
 311
 fluorescent protein fragments, choice of, 311
Caged neurotransmitters (Continued)

flash-lamp photolysis with visible light, 873f–874f, 884–885
laser-pulse photolysis technique, 873f–874f, 883–884
nitrophenyl-based, 889–894
photolysis rate, 871
protocol for cell-flow technique, 880–882
purification and storage of, 872
quantum yield of, 871
reasons for using, 891
ruthenium-bipyridine complexes, 898–900, 899
structure of generic caging groups, 870f
reasons for using, 891
Calcium Green FlAsH, 297, 396f
Calcium Green family, as calcium indicator, 398
Calcium Green-1, 396f
Calcium calibration buffer kits, 410
CAG promoter, 325, 326f, 334
CAG-GFP retroviral vector, 325–326, 326f, 335
Calcium fluorimetry, 399, 403–414
as Ca2+ buffers, 417–419
indicator dyes as tools to measure Ca2+ fluxes,
whole-cell patch-clamping setup, 877–879
whole-cell current-recording technique,
structure of generic caging groups, 870f
ruthenium-bipyridine complexes, 898–900,
reasons for using, 891
quantum yield of, 871
purification and storage of, 872
protocol for cell-flow technique, 880–882
nitrophenyl-based, 889–894
laser-pulse photolysis technique, 873f–874f,
flash-lamp photolysis with visible light,
changes in fluorescence intensity,
calibration methods, 406–409
application example, 413, 414f
fluorescence lifetime, 404f, 408
procedure, 421
auxiliary measurements, 422
measurement of calibration constants for quantitative calcium fluorimetry (protocol), 423–425
problems, 419–421
dye concentration and background subtraction, 403–406
fluorescence, 398–399
improvements in prototype, 427–428
how they work, 395–399
BAPTA-based chelators, 395–397, 397t
sterically modifying groups, 396, 397t
deceased ligands, 397, 397t
electron-withdrawing substituents, 396, 397t
fluence on calcium signals, 417–419
invention of, 437
quantitative aspects of calcium fluorimetry,
structure, 396f
two-photon cross-sectional value, 471f
yellow cameleons, 427–435
Calcium measurements from presynaptic terminals, 413, 414f
Calcium phosphate, transfection with, 331–332, 344
Calcium Green-1, 396f
Calcium Green family, as calcium indicator, 398
Calcium Green FlAsH, 297, 396f
Calcium indicators
aequorin, targeted recombinant, 371, 437–441
as Ca2+ buffers, 417–419
calibration of fluorescent, 399, 403–414
application example, 413, 414f
calibration methods, 406–409
changes in fluorescence lifetime, 404f, 408
changes in FRET intensity, 404f, 408
quantum yield of, 871
dual-wavelength ratiometric measurements, 404f, 407
single-wavelength measurements, 404f, 406–407
total calcium flux measurements, 409
changes in fluorescence intensity,
Chameleon (Coherent, Inc.), 111, 138

CFP. See Cyan fluorescent protein (CFP)

Cell volume, 286f, 287

Cellular spheroids, imaging with single-plane
Cellular bioluminescence imaging.

CellTracker (Invitrogen), 794

Ceramide, fluorescent, 213–214

CFP. See Cyan fluorescent protein (CFP)

Chameleon (Coherent, Inc.), 111, 138

Charge-coupled device (CCD) camera, 59–63
for bioluminescence imaging, 576–579
comparisons of, 378, 379f
conventional CCD, 377
detection of photons, 376–377
electron-multiplying CCD, 378
integrated systems, 379
intensified CCD, 377–378
noise, 377
settings to maximize SNR, 378–379

Click beetle luciferases, 373, 374

Clock-induced charge (CIC), 378, 379

CMV promoter, 326f, 334

Cyan fluorescent protein (CFP)

 Diaschisis (neuronal rewiring), 552

Digital microfluidics, imaging with, 25–27

Digital postprocessing for fast 3D imaging
Caveats of dynamic imaging, 827
Digital side illumination, 813–817

digital side illumination microscopy, 816

Diode lasers, 742–743

Differential interference contrast (DIC)
cost of, 240
for bioluminescence imaging, 378
for fluorescence speckle microscopy (FSM), 672
for infrared video microscopy, 80
Nyquist sampling and, 50
for temporal focusing, 866
for ultramicroscopy setup, 764
cost of, 240
diffraction-limited resolution, 151–152

Dito labeling, 378

Dynamic Range, 358

Epifluorescence, 120

Epifluorescence microscopy, 246

Epifluorescence microscopic images, 246

Epifluorescence microscopy, 52, 53

Epitopes, 378

Epstein-Barr virus (EBV), 831–832, 832f

Equation, 387

Erasers, 380

Erythrocytes, preparing and imaging MDCK cysts in,

Erythrocytes, preparing and imaging MDCK cysts in,
Confocal microscopy (Continued)
limitations of, 788
multiphoton microscopy compared to, 105–107
optical sectioning, 97–103, 98f, 788, 823, 862
optical transfer function (OTF), 98–99, 99f
paralyzed, 828
for quantitative immunofluorescence microscopy, 245
configuring, 246–250, 249f
rejection of out-of-focus light, 824, 824f
resolution, factors influencing, 88–90
deconvolution, 90
object illumination and detector aperture, 89–90
point spread function, 88
specimen thickness and depth of field, 89
signal optimization, 90–92
detector quantum efficiency, 91
image digitization, 91–92
optical-transfer efficiency, 91
scanning mode, 92
signal-to-noise ratio (SNR), 90–91
spinning disk system, generic, 100–102, 101f
theory of optics, 87–90
principle, 87–88, 88f
resolution, 88–90
Confocal scanning fluorescence microscopy (CSFM), 41
Constant-flown microinjection system, 348, 349f, 363–365
Contact mode, AFM operational method, 589–590
Contact time, 286f, 287
Contrast, video-enhanced, 21
Contrast ratio, of photoactivatable fluorescent proteins, 553
Controls, for immunofluorescence microscopy, 239–240
Cooled charge-coupled device (CCD) camera advantages of, 62
characteristics of, 63
deconvolution and, 48
disadvantages of, 63
for fluorescence speckle microscopy (FSM), 472
for infrared video microscopy, 80
Nyquist sampling and, 50
for temporal focusing, 866
for ultramicroscopy setup, 764
COSM (computational optical sectioning microscopy), 41
COSMOS software package, 46
Coumarin derivatives as caging groups, 870f, 872
Coverslips
cleaning with acid, 165–166
with base, 166
with detergent, 166
for FIONA (fluorescence imaging with one-naometer accuracy), 523–524
for PALM, 542
for smFRET, 484
for fluorescence microscopy coating, 167–168
preparation, 165–166
for microinjection, 333–354
etching coverslips, 353f, 354
plating cells onto, 354
mounting of live cells attached to, 176–177
Cp173Venus, 428, 431–432
CpVenus173, 433
Cre recombinase, 327, 328, 329f
Craf conferter, 139
Cross correlation, in fluorescence correlation spectroscopy (FCS), 614
CRS. See Coherent Raman scattering (CRS)
Cryostat, 169
Cryosections
protocol, 169–170
Cryostat, 169
Culture medium (recipe), 339
Cytomegalovirus (CMV) promoter, 346–347
Cy3/Cy5 pair, for FRET, 476f, 477, 477f
Cyclooxygenase-2 (COX-2), 455–456
Cyan fluorescent protein (CFP)
Cyan-4, as calcium indicator, 398–399
Cy3
absorption and emission spectrum, 477
Cy3/Cy5 pair, for FRET, 476f, 477, 477f
Cy5
absorption and emission spectrum, 477
Cy3/Cy5 pair, for FRET, 476f, 477, 477f
for fluorescence correlation spectroscopy (FCS), 612
as photoswitchable dye, 550–551, 552f
Cyan-4, as calcium indicator, 398–399
Cyan fluorescent protein (CFP)
FRET and, 391, 652
yellow cameleons and, 427–428, 429f, 431–432, 434
Cyclic AMP (cAMP), 372
Cyclodextrin, 725
Cycloxygenase-2 (COX-2), 455–456
Cy3/Cy5 pair, for FRET, 476f, 477, 477f
Cy3-DNA, imaging under deoxygenation conditions, 523–526
Cytomegalovirus (CMV) promoter, 346–347
Cytoplasm, labeling with fluorescently labeled ficolloid or dextran, 225–227
Cytoskeleton
F-actin, fluorescent labeling of, 199–200
quantification of actin cytoskeletal structures, 741, 742f
immunoimaging, 286–287, 286f
stochastic optical reconstruction microscopy (STORM), 558–561
time-domain fluorescence lifetime imaging microscopy, 647–650
DexFCCS (dual-color fluorescence cross-correlation spectroscopy), 610, 612, 614, 616, 616f, 618, 621
DC filter, for PALM, 542
DEAE (diethylamino ethanol)-dextran, transfection with, 344
Decalcelling solution, 172
Decalcelling tissues for paraffin embedding, 172
Decomposition
singular-value, 152, 154, 156
space-frequency singular-value, 156
of space-time matrix, 152, 154
Decovolution
determination of PSFs and OTFs for, 48
in fluorescence microscopy, 45–48, 47f, 243, 244
resolution and, 90
shading correction, 250
ultramicroscopy and, 761, 762, 763
Deep See (Spectra-Physics), 139
Degrees of freedom, counting in the frequency domain, 144
Dehydroergosterol (DHE), 195–196
Dehydrodulcereolate (L-AMP), 373
Denoscurus radiolariar, bacteriochromatophore
from, 454
Delayed type hypersensitivity (DTH), 278
Delete-one means, 149, 151
Demodulation
for delineating wave dynamics in systems with rhythmic activity, 156–157
optical sectioning and, 98, 99
of a spatial image in response to periodic stimulation, 156
Dendrimer-mediated transfection, 344, 345, 352
Dendritic cells
adoptive transfer by injection, 276f
imaging T cell priming using bone-marrow-derived DCs, 278–280
stimulating and antigen-pulsing endogenous DCs, 280
Dendritic spines, spatial light modulator (SLM) microscopy of, 856, 856f
Denosing
of spinning-disc confocal imaging data on Ga2+ waves in organotypic culture, 152–154, 153f
wave phenomena in turtle visual cortex, 155f, 156
Depth measurement, with index mismatch, 6–7, 7f
Depfth of field
in fluorescence, 38–39
numerical aperture relationship to, 13, 14
resolution and, 89
Derjaguin–Landau–Verwey–Overbeek force, 592
Detection
confocal and multiphoton microscopy compared, 106
of fluorescence in confocal microscopy, 113–114
of photons in biosbeansence imaging (BLI), 376–377
in temporal focusing, 865–866
Diffuser

- ground-glass light, 21
- in infrared video microscopy, 80
- LED light and, 129

Diffusion coefficient

- in fluorescence correlation spectroscopy (FCS), 617–618
- in FRAP, 685, 686f, 687, 689–690
- in TCS, 633
- Digital camera, 58
- Digital Light Processing (DLP) projector, 131
- Digital micromirror device (DMD), 839–840
- acousto-optic deflectors (AODs), 839, 842, 843, 845, 846f
- comparison with other techniques, 846–847
- multiphoton microscopy, 846
- patch clamp recording, 846–847
- standard confocal microscopy, 846
- control electronics, 841
- fluorescent imaging systems, 841
- hyperspectral and fluorescence lifetime imaging, 844
- microstructure of, 840, 840f
- optical pathways, 846–846
- DMD-based detection pathway, 845–846, 846f
- DMD-based illuminated and detection pathways, 845
- DMD-based illuminated detection pathway, 845–845
- overview, 839–840
- Digital slide imaging (DSI), 251
- Digitonin
- for cell permeabilization, 255
- Di-5-ASP, 721
- Di-4-ANEPPS, 721, 727, 728f, 729f, 730–731, 730f
- Diaminobenzidine-immunohistochemistry
- DHE (dehydroergosterol), 195–196
- Dexamethasone, 781
- Detector aperture, resolution and, 89–90
- Detector
- in high-speed two-photon imaging, 837
- quantum efficiency of, 91
- Detectors
- for etching coverslips, 354
- Di-4-ANEPPS, 721
- Di-4-ANEPPS, 721
- DIC. See Differential interference contrast (DIC)
- Dichroic beam splitter, 25–30, 27f, 248, 250
- polarized light combined with, 691
- as permeabilization agent, 161–162
- Dissociation constant of the Ca2+ buffer, 419–420
- Dissipative soliton lasers, 140–141, 141f
- Dissection solution (recipe), 339
- Dithionite, 195–196
- Direct or one-step immunofluorescence, 159–160
- Direct-labeled monoclonal antibody, 225–227
- Diode-pumped solid-state (DPSS) lasers, 601–602
- Dio-C3(3) (1′,1′-dihexadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate), labeling membranes with, 186–187, 188f
- Dil fluorophore, 255
- Dil-C16 (3) (1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate), labeling membranes with, 601–602
- DNP
- in fluorescence correlation spectroscopy (FCS), 617–618
- in fluorescence correlation spectroscopy (FCS), 693, 693
- in high-speed two-photon imaging, 837
- quantum efficiency of, 91
- Dorsal root ganglion (DRG), 453–454
- Dtie (diphthymeethriasite), 192
- DPSS (diode-pumped solid-state) lasers, 601–602
- DRAQ5, 256
- Drosophila melanogaster
- egg chamber, axially resolved images of, 864f
- single-plane illumination microscopy (SPIM) of embryos, 792, 792f
- ultramicroscopy of, 765, 765f, 767
- DSI systems, 261–262
- DiRed, 453–454
- DTH (delayed type hypersensitivity), 278
- Dual-color fluorescence cross-correlation spectrometry (dFCCS), 610, 612, 614, 616, 616f, 618, 621
- Dumbell's modified Eagle's medium, 380
- Dwell time, 827
- Dyprobes, 75
- see also Fluorescent dyes; specific dyes
- excitation and fluorescence spectra, 31f
- extinction coefficient, 30
- Jablonski diagram, 30, 31f
- labeling cell structures with nonimmunological fluorescent dyes, 181–230
- membrane-potential-dependent, 204–212
- photochemical degradation, 32
- quantum yield of, 32, 90
- saturation of, 41
- voltage-sensitive, 149, 150f, 154, 155f
- Dye triplets, 32
- DλLight (640–antifluorescein), 235
- Dynamic modes, AFM imaging method, 591
- Dynamics of biological processes by fast confocal microscopy, 823–830
- Dynamin, tracking movements of, 606–607
- EBCCD. See Electron bombardment CCD (EBCCD) camera
cFP (enhanced CFP), FRET and, 391–392
- EDL force (electrostatic double-layer force), 592
cGFp. See Enhanced GFP (eGFp)
- EGF, structure of, 396f
- Electromagnetic pulse (EMP), 910
- Electromagnetic spectrum, 903, 904f
- Electron bombardment CCD (EBCCD) camera advantages of, 61
- characteristics of intensified, 61–62
- Electronic imaging devices. See also Charge-coupled device (CCD) camera for differential interference contrast (DIC) microscope, 73
- Electron microscopes (EM), 586
- Electron-multiplying charge-coupled device (EMCCD) camera advantages of, 61
- for bioluminescence imaging, 378
- characteristics of, 62

DSCOSA, sp., 612
- Displacement of the cell, 286f, 287
- Dissection solution (recipe), 339
- Dissipative soliton, 140–141
- Dissipative soliton lasers, 140–141, 141f
- Dissociation constant of the Ca2+ buffer, 419–420
- DLB buffer (recipe), 608
- DLP Discovery instruments, 839
- DMD. See Digital micromirror device (DMD)
- DMF (dimethylformamide), 191
- DNA imaging with atomic force microscopy, 590f, 592, 593
- labeling using DAPI, 201–202
- labeling with Hoechst 33342, 203
- DNA delivery. See Microinjection
- DNA microinjection.
- DNA polymerase, AFM imaging of, 592
- Dodt gradient contrast, 76
- Donor excited-state lifetime, 388
- Donor photobleaching rate, 388
- Dopamine 2 receptor (D2R), as cell surface reporter, 452
- DOPE, 344
- DOTAP, 344
- DOTMA, 344
- DPH (diphenylhexatriene), 192
- DPSS (diode-pumped solid-state) lasers, 601–602
- DRAXS, 256
- Drift, correction in STORM, 560
- Dropla, in PALM, 536
- Drosophila melanogaster
- egg chamber, axially resolved images of, 864f
- single-plane illumination microscopy (SPIM) of embryos, 792, 792f
- ultramicroscopy of, 765, 765f, 767
- DSI systems, 261–262
- DiRed, 453–454
- DTH (delayed type hypersensitivity), 278
- Dual-color fluorescence cross-correlation spectrometry (dFCCS), 610, 612, 614, 616, 616f, 618, 621
- Dumbell's modified Eagle's medium, 380
- Dwell time, 827
- Dyprobes, 75
- see also Fluorescent dyes; specific dyes
- excitation and fluorescence spectra, 31f
- extinction coefficient, 30
- Jablonski diagram, 30, 31f
- labeling cell structures with nonimmunological fluorescent dyes, 181–230
- membrane-potential-dependent, 204–212
- photochemical degradation, 32
- quantum yield of, 32, 90
- saturation of, 41
- voltage-sensitive, 149, 150f, 154, 155f
- Dye triplets, 32
- DλLight (640–antifluorescein), 235
- Dynamic modes, AFM imaging method, 591
- Dynamics of biological processes by fast confocal microscopy, 823–830
- Dynamin, tracking movements of, 606–607

E
- EBCCD. See Electron bombardment CCD (EBCCD) camera
cFP (enhanced CFP), FRET and, 391–392
- EDL force (electrostatic double-layer force), 592
cGFp. See Enhanced GFP (eGFp)
- EGF, structure of, 396f
- Electromagnetic pulse (EMP), 910
- Electromagnetic spectrum, 903, 904f
- Electron bombardment CCD (EBCCD) camera advantages of, 61
- characteristics of intensified, 61–62
- Electronic imaging devices. See also Charge-coupled device (CCD) camera for differential interference contrast (DIC) microscope, 73
- Electron microscopes (EM), 586
- Electron-multiplying charge-coupled device (EMCCD) camera advantages of, 61
- for bioluminescence imaging, 378
- characteristics of, 62

- Detectors
- in high-speed two-photon imaging, 837
- quantum efficiency of, 91
- Detectors
- for etching coverslips, 354
- Di-4-ANEPPS, 721
Electron-multiplying charge-coupled device (EMCCD) camera (Continued)

cost, 240

disadvantages of, 61

for fluorescence speckle microscopy (FSM), 672

gain, 246

for PALM, 537, 538–539, 542, 543

for quantitative immunofluorescence microscopy, 246

for srmFRET, 480

for STORM, 535

for temporal focusing, 866

for TIRFM, 603–604

Electro-optic modulators (EOMs)
in CRS, 748

in srmFRET, 492

Electrophoresis, 345–346

equipment, 345–346

methods, 345–346

Electrophoretors, 345–346

Electrostatic double-layer force (EDL force), 392

Ellis fiber-optic light scrambler, 21

Elution solution (recipe), 718

E-M (expectation-maximization) algorithm, 46

Embedding

brain tissue (protocol), 703

decalifying tissues for paraffin, 172

fixing tissues for paraffin, 172

of tissue samples in paraffin, 173

EMCCD. See Electron-multiplying charge-coupled device (EMCCD) camera

in vivo optical microendoscopy, 778

PALM, 542

srmFRET, 492

TIRFM, 603

Emission maxima for fluorochromes, 907t–908t

Emission ratioing, 388, 427

EMP (electromagnetic pulse), 910

Endocytosis, of quantum dots, 579

Endoplasmic reticulum

labeling with DiO-C-(3), 219–220

labeling with ER-Tracker, 221–222

Enhanced GFP (eGFP), 238

for fluorescence correlation spectroscopy (FCS), 612, 613f

time-domain FLIM and, 650, 651f

two-photon cross-sectional value, 469, 471f

Enhanced yellow fluorescent protein (eYFP)
eYFP-RLuc (Renilla luciferase), 374

FRET and, 391–392

Enhanced GFP (eGFP)

for fluorescence correlation spectroscopy (FCS), 602

Fab-fluorophore conjugates, 238

F‐actin fluorescent labeling of, 199–200

optical-sectioning microscopy, 741, 742f

polymerization/depolymerization, fluorescent speckle microscopy (FSM) of, 677, 678f, 679f

Factor Xa, as FRET indicator, 388t, 391

Fab-fluorophore conjugates, 238

F‐actin fluorescent labeling of, 199–200

optical-sectioning microscopy, 741, 742f

polymerization/depolymerization, fluorescent speckle microscopy (FSM) of, 677, 678f, 679f

Factor Xa, as FRET indicator, 388t, 391

FAD (flavin adenine dinucleotide), 469

FAD (flavin adenine dinucleotide), 391

autofluorescence of, 183, 622

as calcium indicator, 199–200

as calcium indicator, 398

structure of, 396f

two-photon cross-sectional values for, 468, 469f, 470f

Flavin adenine dinucleotide (FAD), 469

Flavin mononucleotide (FMN), 469

FAD (flavin adenine dinucleotide), 391

autofluorescence of, 183, 622

Flavin mononucleotide (FMN), 469

FLIM. See Fluorescence lifetime imaging microscopy (FLIM)

Flow cytometry

BiFC analysis, 306–309

direct-labeled monoclonal mouse IgG antibodies, 235

visualization of ubiquitin conjugates using UbFC analysis, 321–323

Fluc. See Firefly luciferase (Fluc)

Fluo-3

as calcium indicator, 398

structure of, 396f

Fluoresbrite B/B (bright blue) beads, 422

Fluorescein

antibodies to, 235

disadvantages of, 235

two-photon cross-sectional values for, 468, 469f, 470f

Fluorescein isothiocyanate (FITC), 603

Fluc. See Firefly luciferase (Fluc)

Fluo-3

as calcium indicator, 398

structure of, 396f
Fluorescence imaging with one-nanometer resolution, 735–743
Fluorescence diffuse tomography, 454–455
Fluorescence decay
- Fluorescence polarized light combined with, 691–692
- Schematic of, 735
- Noise, 739
- Image processing formulas, 737
- Comparison to other optical-sectioning techniques, 610–611
- Two-photon excitation (TPE), 611, 618, 621
- Theoretical outline of, 613–616
- Technique development, 610–611
- Scanning (sFCS), 611

Fluorescence intensity
- Calibration of absolute, 409, 412
- Changes as indicator of calcium binding, 404–405
- Increasing with enzymatic amplification, 239
- With rinses, 238–239

Fluorescence lifetime imaging
- As indicator of calcium binding, 404, 408
- Methods of measurement, 408
- Two-photon fluorescent lifetime imaging microscopy (2pFLIM), 443–449
- Fluorescence lifetime curve, fitting, 444

BiFC analysis, 299–323
Conversion of a standard confocal microscope into a two-photon microscope, 111–115, 112f
Deconvolution in, 45–48, 47f
Filters, 905–906
Fluorescence imaging with one-nanometer accuracy (FIONA), 507–531
Fluorescence speckle microscope (FSM), 667–681
Image correlation spectroscopy (ICS), 627–638
Immunofluorescence microscopy, 231–267
Immunomarking, 269–288
Labeling cell structures with nonimmunological fluorescent dyes, 181–230
Light-sheet-based fluorescence microscopy (LSFM), 787–806
Limitations of conventional wide-field, 788
Multiphoton-excitation, 105–109
Fluorometer-localized multiple single-molecule (NALMS), 509
Optical components, 32–36, 33f
Filters, 32–34, 33f, 35f, 36
Light sources, 34–36
Variations in systems, 36
Optical efficiency and numerical aperture, 39–40, 41f
Optical transfer function (OTF), 41–45, 44f, 48, 99f
Overview of, 30–41
Photoactivated localization microscopy (PALM), 533–545
Preparation of cells and tissues for, 159–180
Cellular autofluorescence, 163
Fixation and permeabilization, 160–162
Mounting media, 163–164
Overview, 159–160
Protocols
- Coating slides and coverslips, 167–168
- Cryosectioning, 169–170
- Mounting of live cells attached to coverslips, 176–177
- Paraffin sections, 171–175
- Paraffin sections, 171–175
- Preparation of slides and coverslips, 163–166
- Recipes, 178–180
- Sectioning of tissues, 162–163
- Principles of, 36–39
- Research-grade, 240–244
- Key components, diagram of, 242f
- Lamps and filters, 241–242
- Lenses, 242–244, 243t
- Maintaining, 241
- Mounting media, 244, 244t
- Purchasing, 240–241
- Safe operation, 909–910
- Simultaneous DIC and fluorescence imaging, 76, 77f
- Single-molecule FRET using total internal reflection microscopy, 475–487
- Sources of background in, 51
- Stochastic optical reconstruction microscopy (STORM), 547–573
- Switchover from DIC to, 29–30
- Total internal reflection fluorescence microscopy (TIREM), 597–608
Fluorescence microscopy (Continued)
video-intensified microscopy (VIM), 57, 67–68
Fluorescence molecular tomography platform (FMT), 251
Fluorescence nanoscopes, 232, 236, 245
Fluorescence optical-sectioning microscopy, 735–743
computation of optical section, 737–739, 737f, 738f
future outlook, 743
operating principle and instrumentation, 736–737, 736f
performance, 740–742, 741f, 742f, 743t
sampling in image plane, 739–740, 740f
sharpness of optical section, 739
signal-to-noise ratio, 739
Fluorescence ratio, 419, 421, 422, 423
Fluorescence recovery after photobleaching (FRAP), 655–664
compartmentalization analysis, 662–664
diffusion parameter determination, considerations in, 663–664
instrumentation, 663
procedure, 663
conventional (one-photon) compartmentalization analysis, 662–664
description, 656
diffusion analysis, 660–661
diffusion parameter determination, considerations in, 657–659
instrumentation, 656, 656f
procedure, 657
multiphoton FRAP (MPFRAP) compartmentalization analysis, 662–664
description, 656
diffusion analysis, 660–661
diffusion parameter determination, considerations in, 657–659
instrumentation, 656f, 657
procedure, 657
recovery curve, 658f, 660f
overview, 655–656
spatial Fourier analysis FRAP (SFA-FRAP) compartmentalization analysis, 662
description, 661
diffusion analysis, 662
diffusion parameter determination, considerations in, 661
instrumentation, 661, 661f
procedure, 661–662
Fluorescence recovery curve, FRAP, 657–660, 658f, 660f, 663–664
Fluorescence reference slides, plastic, 250
Fluorescence resonance energy transfer (FRET)
absence of signal, reasons for, 652–653
advantages and limitations of, 300
BiFC analysis compared to, 309
description, 642
design of probes, 390
efficiency, measurement of, 388
efficiency changes and calcium indicator calibration, 404f
emission ratioing, 388
experimental design, 476–478
fluorophore choice, 476–477, 477f
location for attachment of fluorescent labels, 477
surface preparation, 477–478, 478f
false signals, 652
FLIM compared, 443–444
fluorophore-Fab conjugates and, 238
FRET-FLIM donors, choice of, 651–652, 651t
indicators, 387–389
β-lactamase, 388t, 389, 392
cameleons, 389, 391–392
cAMP indicators, 388t, 389f, 391
design of, 390
GFP-based, 388t, 389f, 391
intermolecular protein–protein interactions, 392
membranes, ultramicroscopy indicators, 388t, 389f, 390
Perschini systems, 389f, 391
schematics of response mechanisms, 389f
table of physiological indicators, 388f
measurements of, 388
minimal fraction of interacting donor (mf), 641, 642, 649, 650–651, 650f
as molecular ruler, 475
multiphoton excitation, 390
photobleaching and, 652
photophysical principles of, 388–390
protein interactions with alternative partners, 301
theory, 642–644, 643f
efficiency of transfer, 643–644
fluorescence decay of donor, 644
transfer rate, 643
color, 482
time-domain fluorescence lifetime imaging microscopy, 641–653
yellow cameleons and, 427–434
fluorescent beads, ultramicroscopy and, 763
Fluorescent dyes, labeling with, 181–230
protocols, 183, 184–227
choosing a probe, 182
labeling mitochondria with MitoTracker dyes, 209–210
labeling mitochondria with rhodamine 123, 204–205
labeling mitochondria with TMRM or TMRE, 206–207, 208f
labeling nuclear DNA using DAPI, 201–202
labeling nuclear DNA with Hoechst 33342, 203
labeling pinocytic vesicles and cyttoplasm with fluorescently labeled ficol or dextrans, 225–227
labeling the Golgi with BODIPY-FL-ceramide (C2-DMB-ceramide), 213–214
labeling the plasma membrane with TMS-DPH, 191–192
mounting live cells onto microscope slides, 184–185
recipes, 228
Fluorescent nanoscopy, 234
Fluorescent probes, multiphoton excitation of, 465–473
Fluorescent protein. See also Fluorophores as contrast agents in photoacoustic imaging, 817
families for immunofluorescence and live cell imaging, 236–237, 237f
table of physiological indicators, 388f
families for immunofluorescence and live cell imaging, 236–237, 237f
for fluorescence correlation spectroscopy (FCS), 612–613, 613f
photocatchable, 535, 536
photoswitchable, 536
two-photon cross-sectional value, 470, 471f
Fluorescent protein fragments in BiFC analysis
choice of fragments, 303–304
fluorescence intensity, 304, 305t
spontaneous fragment association, 304, 305t
choice of compatible for multicolor BiFC analysis, 311
effect of fusions on ubiquitin-family peptide conjugation to substrate proteins, 320
effects of complex stabilization by fragment association, 313
effects of differences between on multicolor BiFC analysis, 312–313
in ubiquitin-mediated fluorescence complementation (UbFC), 319–322
Fluorescent speckle microscopy (FSM), 667–681
applications, 677–679, 678f
metaphase spindle architecture, 677, 678f
polymerization/depolymerization of F-actin networks, 677, 678f
data analysis, 673–677, 675f
image alignment/registration, 676
kymograph, 673, 675, 675f
procedure for computational analysis, 675–677
software, 676–677
speckle detection, 676
speckle tracking, 676
future outlook for, 679–680
implementation, 671–673
camera selection, 672
filter selection, 673
Lasers (Continued)
for ultramicroscopy, 764
white light, 117
ytterbium, 139
Laser-scanning confocal microscope
acousto-optic modulator based, 93–94
conversion to multiphoton-excitation microscope, 108
dye saturation, 91
mirror based, 92–93
optical transfer efficiency, 91
sampling rate, 92
simultaneous DIC and fluorescence imaging, 76, 77f
yellow cameleon use for fast calcium imaging, 427, 431–434
Laser-scanning microscopy
fluorescence correlation spectroscopy (FCS) and, 616
ICS and, 636
Laser shutters, electronically controlled, 556
LC-PolScope, 688–692, 688f, 689f
Laser beams, 125, 128f
Laser diode modules, 130–131, 130f
Laser microscopes
infinite-conjugate systems, 5, 16–19, 17t, 20f
Köhler illumination, 19–21, 20f
light as a wave, 7–10, 9f
optical constants, 10
paraxial image formation, 3–6, 4f, 5f
principal optical components, 19–21, 20f
resolution in transmitted light microscopes, 10–14, 11f, 12t, 13f
sine condition, 15–19, 18f
Light scattering
reducing with use of near-infrared (near-IR) radiation, 79
Light scrambler, 21
Light-sheet-based fluorescence microscopy
Light-sheet-based microscopy. See Ultramicroscopy
Light source
for fluorescence microscopy, 34–36
for high-speed two-photon imaging, 832–833
for TIRFM, 601–602
Linearity, camera, 58
Line-scanning temporal focusing, 865
Lipid rafts
fluorescent labeling of, 197–198
microdomains, 198
Lipofectamine 2000
quantum dots, labeling cells with, 579
transfection with, 331, 344
Lipofectin, 344
Liposome-mediated transfection, 276
Liposomes, 276
LysoTracker
labeling in live cells with neutral red, 215–216
LysoTracker
labeling in live cells with neutral red, 215–216
LysoTracker
labeling lysosomes with, 217–218
LysoTracker Green, 217–218
LysoTracker Red, 217
M
M13, 391, 427, 428, 429, 429f, 430f
MagFura, structure of, 396f
MagFura-2, 413, 414f
Magnetic resonance imaging (MRI), 452, 815, 817, 818
Magnification, equations for, 5–6, 5t
MATLAB, 147, 480
for fluorescence speckle microscopy (FSM), 480
for fluorescence correlation spectroscopy (FCS), 612
Matriel, preparing and imaging MDCK cysts in, 804–805
mCherry
for FLIM, 448
for fluorescence correlation spectroscopy (FCS), 612
for fluorescence correlation spectroscopy (FCS), 612
photoactivatable (PA-mCherry), 536
for time-domain FLIM, 650, 651f
MDCK cysts, imaging with a SPIM, 802–805
Medial nucleus of the trapezoid body (MNTB),
Microendoscopy.

Microendoscope probe, 774–777
Microchannel plate (MCP), 60
Microbench optical construction system, 764
Methoxy-5-nitrophenol (MNP) protecting
MetaMorph software
Metal-to-ligand charge transfer, 898
Metal halide arc lamp, 118, 119

Membranes
FCS studies, 622–623, 623f
labeling glycoproteins or glycolipids with fluorescent wheat germ agglutinin, 193–194
labeling with carboxylic dyes (Dils) as phospholipid analogs, 186–187, 188f
labeling with fluorescent cholesterol, 195–196
labeling with fluorescent phosphatidyl-ethanolamine, 189–190
labeling with TMS-DPH, 191–192
monitoring membrane potential with second-labeling with TMS-DPH, 191–192
labeling with fluorescent phospholipid analogs, 186–187, 188f
labeling with carboxylic dyes (Dils) as phospholipid analogs, 186–187, 188f
labeling with fluorescent cholesterol, 195–196
labeling with fluorescent phosphatidyl-ethanolamine, 189–190
labeling with TMS-DPH, 191–192
monitoring membrane potential with second-labeling with TMS-DPH, 191–192

Microinjection needles
DNA sample preparation and loading sample into pipettes, 358–359
backfilling, 359
front-filling, 359
troubleshooting, 361, 364

Microscopy. See also specific types
Microscopy, 80

Motility coefficient, 286f, 287
Motor proteins, TIRFM for tracking, 604, 605, 605f, 606–607

Mouse
Brainbow, 329
dissection, for in situ and intravitral lymph node imaging, 282, 283f
retroviral vector use in, 326–338, 327f–329f
ultramicroscopy of dissected hippocampi, 770
of embryos, 762f, 765, 768, 771
lectin-labeled organs, 766
of whole brains, 769
XFP-expressing transgenic mice, 766
Moviol mounting medium for fluorescent samples (recipe), 179
MPO. See Molecular photoacoustic imaging (MPO)
MPFRAP. See Multiphoton fluorescence recovery after photobleaching (MPFRAP)

MitoTracker Orange, 204
MNI-D-Asp, 890t, 894
MNI-Glu, 890, 890t, 893, 894
MNP-caged β-alanine, 871
Mode-locked Ti:sapphire lasers, 135, 138
Molecular motors, FIONA studies of, 511–515
using in vitro FIONA to analyze myosin V movement, 511–512, 512f, 513f
using in vitro FIONA to study peroxisome transport, 512, 513f, 514–515, 514f
using SHRImP to analyze motion of myosin VI, 515, 515f
Molecular photoacoustic imaging (MPO), 813–818
gold nanoparticle-based, 815–816, 816f
ICG-based, 815
imaging of gene expression, 817
multimodality imaging, 817–818
single-walled carbon nanotube (SWNT)–based, 816–817
Molecular ruler, FRET as, 475
Moloney murine leukemia virus (Mo-MLV), 325–327, 334
Monochromator, 118, 121
Monoclonal antibody therapeutics, 254

Motor proteins, TIRFM for tracking, 604, 606–607
Mounting
live cells attached to coverslips, 176–177
live cells onto microscope slides, 184–185
Mounting media, 163–164
immunofluorescence, 244, 244t

MitoTracker Green FM, 204
MitoTracker Orange, 204
MNI-D-Asp, 890t, 894
MNI-Glu, 890, 890t, 893, 894
MNP-caged β-alanine, 871
Mode-locked Ti:sapphire lasers, 135, 138
Molecular motors, FIONA studies of, 511–515
using in vitro FIONA to analyze myosin V movement, 511–512, 512f, 513f
using in vitro FIONA to study peroxisome transport, 512, 513f, 514–515, 514f
using SHRImP to analyze motion of myosin VI, 515, 515f
Molecular photoacoustic imaging (MPO), 813–818
gold nanoparticle-based, 815–816, 816f
ICG-based, 815
imaging of gene expression, 817
multimodality imaging, 817–818
single-walled carbon nanotube (SWNT)–based, 816–817
Molecular ruler, FRET as, 475
Moloney murine leukemia virus (Mo-MLV), 325–327, 334
Monochromator, 118, 121
Monoclonal antibody therapeutics, 254
Motility coefficient, 286f, 287
Motor proteins, TIRFM for tracking, 604, 606–607
Mounting
live cells attached to coverslips, 176–177
live cells onto microscope slides, 184–185
Mounting media, 163–164
immunofluorescence, 244, 244t

Mouse
Brainbow, 329
dissection, for in situ and intravitral lymph node imaging, 282, 283f
retroviral vector use in, 326–338, 327f–329f
ultramicroscopy of dissected hippocampi, 770
of embryos, 762f, 765, 768, 771
lectin-labeled organs, 766
of whole brains, 769
XFP-expressing transgenic mice, 766
Moviol mounting medium for fluorescent samples (recipe), 179
MPO. See Molecular photoacoustic imaging (MPO)
MPFRAP. See Multiphoton fluorescence recovery after photobleaching (MPFRAP)

MRFP for FLIM, 447, 447f, 448
for fluorescence correlation spectroscopy (FCS), 612
MRI (magnetic resonance imaging), 452, 815, 817, 818
mRNA, bioluminescence imaging (BLI) of, 458–459, 458f
mStrawberry, for fluorescence correlation spectroscopy (FCS), 612
MTFP1, 651–652, 651t
Multicolor BiFC, 310–318
absolute and relative competition approaches to quantifying relative efficiencies of complex formation, 313–314, 317
controls, 311
design of constructs for, 311
Multicolor BiFC (Continued)
efficiency of complex formation, analysis of, 311
fluorescent protein fragments, choice of, 311
fusion protein expression, 311
limitations of, 312
overview, 310
principle of, 310, 310f
protocol, 315–318
quantifying relative efficiencies of complex formation, 312, 313–314
Multicolor storm, 653–654
Multicolor TIRFM, 600f
Multidimensional data analysis, 286–287, 286f
Multiepitope ligand cartography/toponome
Multidimensional imaging, 721
Multiphoton excitation fluorescence microscopy,
Multiphoton microscopy
Multiphoton excitation
estimation of, 466–467
fluorescein, two-photon cross-sectional values for, 468, 468f, 470f
of fluorescent probes, 465–473
two-photon cross-sectional data, 468–473, 470f–472f
Multiphoton excitation fluorescence microscopy, 105–109
application examples, 108–109
coherent Raman scattering (CRS) compared to, 745, 746, 754
instrumentation, 107–108
excitation light source, 107–108
setup, 108
wavelength selection, 108
theory, 103–107
detection, 106
laser pulse width, 107
localized excitation, 106
out-of-focus light rejection, 105
resolution, 107
scattered light, 106–107
Multiphoton excitation laser-scanning microscopy, 138
Multiphoton fluorescence recovery after photobleaching (MPFRAP)
compartimentalization analysis, 662–664
description, 656
diffusion analysis, 660–661
diffusion parameter determination, considerations in, 657–659
instrumentation, 656f, 657
procedure, 656
recovery curve, 658f, 660f
Multichannel microscopy
digital micromirror device (DMD) confocal microscopy compared, 846
optical sectioning, 789
temporal focusing microscopy, 861–867
Multiphoton scanning fluorescence microscopy, 41
Multiple antigens, simultaneous imaging of, 234–235
Multiple protein interactions, simultaneous
Multivariate signal processing, and spectral methods for functional brain imaging, 143–157
Myosin VI, using SHRinP to analyze motion of,
Myosin V movement, using in vitro FIONA to analyze, 511–512, 512f, 513f
N
NA, See Numerical aperture (NA)
NADH (nicotinamide adenine dinucleotide plus hydrogen)
autofluorescence of, 183, 420, 622
two-photon cross-sectional value of, 472f
NAD'-K'-ATPase, 223
Nanocage, gold, 814
Nanometer fluorescence imaging, 5er
fluorescence imaging with one-nanometer accuracy (FIONA)
Nanometer-localized multiple single-molecule (NALMS) fluorescence microscopy, 509
Nanoparticles
gold, 814–816, 816f
photocouaching with, 814–816, 816f
quantum dots (QDs), 577–583, 814–815
single-walled carbon nanotube (SWNT), 816–817
Nanorod, gold, 814
Nanosecule precision in single-molecule localization, 549
Naphthylstyryl dyes, 721
National Institutes of Health Resource in Biomedical Computing, 46
NBD-Ceramide, 213–214
22-NBD-cholesterol, 195–196
NBD-PE, 189–190, 193
Near-infrared fluorescent protein (NIRF), 454
Needles. See Microinjection needles
Negative aplanatic lens (NAL), 120–121
Neodymium (Nd) lasers, 139
Nernst equation, 207
Neuroblastoma cells, SHG images, 728, 728f, 729f
Neurons
detection, 515, 515f
bioluminescence imaging, 372, 372f
culturing for bioluminescence imaging, 380
deduction of synaptic connectivity between, 143, 149–152, 150f
infrared video microscopy of, 79–84, 84f
membrane time constant of, 144
retroviral-mediated single-cell knockout technique, 327, 329f
retroviral vector for imaging of, 326, 327f
light spatial modulator (SLM) microscopy, 856, 856f, 857f, 858
two-photon microscopy, 114, 115f
ultramicroscopy imaging of, 766
Neuroscience, PALM’s potential in, 544
Neurotransmitters. See Caged neurotransmitters
Neural-density, 906
Neutral red, labeling lysosomes with, 215–216
Neutral-density
Neurons, nuclear
Neuropeptide Y (NPY) knockout, 544
Non-viral transfection, 343–345
Nonviral gene delivery, 343–367
electroporation, 345–346
microinjection, 346–350
DNA concentration, 346–347, 347f
micromanipulator/microinjection systems, 348, 349f
needles, 348
nuclear versus cytoplasmic, 346
protocols, 353–365
timing of gene expression, 347, 347f
Nonviral transfection, 343–345
cell cycle timing for, 344
dendrimer-mediated, 344, 345, 352
liposome-mediated, 344, 345, 350–351
multicomponent-system-mediated, 344, 345
overview, 343–344
plasmid preparation for, 344
protocols
dendrimer-mediated transfection, 352
DNA sample preparation and loading
Copyright 2010 Cold Spring Harbor Laboratory Press. Not for distribution. Do not copy without written permission from Cold Spring Harbor Laboratory Press
for polarized light microscopy, 690
spherical aberration and, 272
for STORM, 555
for TIRFM, 599f, 600, 603
for TIR microscopy, 479
phase-contrast, 24
for polarized light microscopy, 689
standard types for biological microscopy, 2t
for STORM microscope, 554f, 555
for temporal focusing, 864–865
for TIRFM, 599–600, 599f, 603
total internal reflection (TIR) microscope, 478–479
for ultramicroscopy, 764
variable-correction multi-immersion, 15
water-dipping, 272
water-immersion, 15, 17, 80
for 3D STORM imaging, 567
in infrared video microscopy, 80
saline electrophysiology-type dipping, 254
TIRFM, 599f
working distance related to numerical aperture, 788
3-octanol, 169–170
Oil-immersion objective cleaning, 241
immersion optics, 15f
for polarized light microscopy, 690
spherical aberration and, 272
for STORM, 555
for TIRFM, 599f, 600, 603
for TIR microscopy, 479
Olympus Fluoview confocal system, conversion to two-photon microscope, 111–114
On-chip binning, 256, 257, 379
Oncoretroviruses, 325
One-photon absorption, 106
One-photon FRAP. See Fluorescence recovery after photobleaching (FRAP), conventional (one-photon)
One-step immuno-fluorescence, 159–160
OPFOS (orthogonal-plane fluorescence optical sectioning), 758
Optical coherence tomography, 789
Optical constants relevant to microscopy, 10f
Optical efficiency, numerical aperture and, 39–40, 41f
Optical microendoscopy, See In vivo optical microendoscopy
Optical parametric oscillatory (OPO), 748, 749f
Optical path, 10
Optical projection tomography (OFT), 789
Optical sectioning. See also Fluorescence optical-sectioning microscopy
confocal microscopy, 788, 823, 862
light-sheet-based fluorescence microscopy (LSFM), 787, 790
multiphoton microscopy, 789
in multiphoton microscopy, 106
overview, 97–99, 98f
physical sectioning compared to, 789
practical realization of optical sectioning microscopes, 100–102
single (selective) plane illumination microscope (SIPM), 790
Optical sectioning microscopy (OSM), 41–51
deconvolution and estimation, 45–48, 47f
Nyquist sampling and restorations of image field, 49–51
optical transfer function (OTF) in fluorescence microscopy, 41–45, 44f, 48
point-spread-function (PSF) determination, 48
Optical table, for two-photon microscope, 111
Optical-transfer efficiency, in confocal microscopy, 91
Optical transfer function (OTF) confocal microscope, 98–99, 99f
fluorescence microscopy, 41–45, 44f, 48, 99f
Oxidation axis, 694
OptiGrid system (Qiopiq), 99
Orthogonal-plane fluorescence optical sectioning (OPFOS), 758
Out-of-focus light rejection, 105
Over-sampling, 144
Oxygen quenching of dye triplets, 32
scavenger, 32, 357
Oxyrase, 164
P
PAL. (positive quartz aplanatic lens), 120–121
PALM. See Photoactivated localization microscopy (PALM)
PAM (photoacoustic microscopy), 809, 811f
PA-mCherry, 536
Paraffin section description, 162
protocols, 171–175
cutting sections, 173–174
decalciﬁng tissues for embedding, 172
embedding of tissue samples, 173
ﬁxing tissues for embedding, 172
materials, 171
troubleshooting, 174–175
Paraformaldehyde (PFA), 160, 161, 161f
p-hydroxyphenacyl derivatives as caging groups, 870f
Para-phenylenediamine (PDA) (PDA), 160
para-phenylenediamine (p-phenylenediamine), as free-radical scavenger, 164
p-phenylenediamine mounting medium (recipe), 179–180
Paraxial image formation, 3–6, 4f, 5t
Parseval’s theorem, 147
PAT. See Photoacoustic tomography (PAT)
Patch clamp caged neurotransmitters and whole-cell current-recording technique, 874–877
cell-ﬁlter device (U-tube), 874–875
correcting for receptor desensitization, 873–875, 876–877t
whole-cell patch-clamping setup, 877–879
buffers, intracellular and extracellular, 878
cultured cells, 878
electrodes, recording and reference, 878
equipment setup, 878–879
overview, 877–878
reagent preparation, 878
digital micromirror device (DMD) compared, 846–847
in infrared video microscopy, 82
Path length, 268f, 287
Pawley rule, 253–254
Phase-mask computation, in spatial light
Phase delay, 22, 24
Phase contrast
Petri Pulser, 346
Petrán, Mojmir, 100
PET (positron emission tomography), for
Persechini systems, 391
Perrin–Jablonski diagram, modified, 643f
PerkinElmer/Improvision Volocity deconvolution
Pericam
PE (phosphatidylethanolamine), labeling
PCD solution (recipe), 529
Photoacoustic tomography (PAT), 809.
Photoacoustic imaging
Photoactivatable fluorescent proteins (PA-FPs),
PALM and, 535–536
Photoactivated localization microscopy (PALM),
533–545
advantages of, 534
computer hardware and software, 543–544
data acquisition, 543–544
experimental considerations, 535–538
acquisition speed, 538
shift correction, 538
fluorophore choice, 536
imaging area, 537–538
labeling method, 535–536
sample preparation, 538
signal-to-noise ratio (SNR), maximizing,
536–537
filtering solutions for, 542
fluorophore-Fab conjugates and, 238
instrumentation, 538–542, 539f, 540f, 543f
alignment of beam, 541
cleaning, 542
excitation lightpath, 539, 539f
filters, 541–542
magnification, 542
practical design for, 539–541, 540f
signal detection, 542
stage and sample holder, 542, 543f
limitations of, 544
potential in neuroscience, 544
principle of, 534, 535
resolution, 534–535, 535f
temporal focusing use with, 866
Photobleaching
FCS, 620–621
FRAP (fluorescence recovery after
photobleaching), 655–664
FRET and, 504, 652
ICS, 637
minimizing with antioxidants, 164
Photochromism of yellow fluorescent protein,
433
Photolysis rate, for caged neurotransmitters, 871
Photomultiplier tube (PMT) as detector in two-photon microscope, 113
detector quantum efficiency, 91
in fluorescence correlation spectoscopy, 617, 619
in FRAP, 656, 656f, 657
with gallium arsenide photocathode, 272
in MPPFRAP, 656f, 657
multiple, 272
quantum efficiency of, 245, 272
in recombinant aequorin studies, 440, 440f
sensitivity, 245
in TCSPC-FLIM, 645
in two-photon laser-scanning microscopy
(2pLSM), 444
Photon-counting cameras, characteristics of,
60–61
Photon-counting imaging applications, 68
procedure, 68–69
system requirements, 68
Photon energy, defined, 903
Photon noise, 508
Photon transfer efficiency, arc lamp, 118
Photoswitchable fluorescent molecules, 536
multicolor storm, 563–564, 565f
preparation of labeled antibodies, 572–573
STORM, 550–553, 561–573
activator-reporter dye pairs for
multicolor imaging, 552
contrast ratio, 553
cyanine dyes, 531–552, 552f
description of, 550–551
fluorophore brightness, 553
spectral properties, table of, 553f
spontaneous activation, 553
transfection of genetically encoded, 570–571
Physical sectioning, optical sectioning compared, 789
PicoPump, 363
Pinocytotic vesicles, labeling with fluorescently
labeled ficoll or dextran, 225–227
Pipeptes. See Microinjection needles
Pit-1, 391
Pixel depth, 68
Pixelation, resolution and, 49–50
Pixel manipulation, in cooled CCD camera, 62
Pixel shift, 127
Plan-Apochromat objectives, 689
PlasDIC, 76
Plasma membranes labeling glycoproteins or glycolipids with
fluorescent wheat germ agglutinin, 193–194
labeling of lipid rafts in, 197–198
labeling with carboxyamine dyes, 187–188
labeling with fluorescent cholsters, 195–196
TIRFM tracking of proteins in, 604–605, 605f
Plasmid preparation for transfection, 344
Plastic (or methacrylate) sections, 162, 163
PMT. See Photomultiplier tube (PMT)
p-n junction, 123, 124
Pockels cell, 113
for MPPFRAP, 656f, 657
in spatial light modulator (SLM) microscopy,
851f, 852
Point-spread function (PSF) determination of deconvolution, 48
dynamic imaging and, 825, 826f, 827
in fluorescence microscopy, 38, 42–43, 44f,
45–46, 48
high-resolution imaging and, 534–535, 534f
PALM, 534f, 537, 538
resolution and, 88, 548–549
in ultramicroscopy, 763
Polarized light circularly, 694
defined, 694
elliptically, 694
linearly, 694
Polarized light microscopy, 683–689
future prospects, 692
glossary of associated terms, 692–696
LC-PolScope, 688–692, 688f, 689f
choice of optics, 689–690
commercial system, 689
description, 688
differential interference contrast (DIC) and,
691
fluorescence imaging and, 691–692
schematics (SWNT), 688f
specimen preparation, 690–691
overview, 683–684, 692
traditional, 684–687
birefringence and, 685–686
microscope setup, 684–685, 684f
retardance and, 686–687, 687f
pol gene, 326
Pollen grains, single-plane illumination microscopy (SPIM) of, 792f
Polyethylene glycol (PEG) coated slides for smFRET, 477–478, 485–486, 487
to increase refractive index, 690
Poly-Fect, 344
Poly-L-lysine, coating of slides or coverslips, 168
Polymerization/depolymerization of F-actin
Quantitative immunofluorescence microscopy, 299–300
methods of analysis, 299–300
biomolecular fluorescence complementation bioluminescence imaging, 370–371
imaging guidelines, 253–254, 253t
configuring confocal microscope for basic steps, 245–246
Point-spread function (PSF)
Rayleigh limit, 37f
Rayleigh frequency, 144
Rayleigh criterion, 89–90
Ras activity sensor, 447, 447f, 448–449
Rater image correlation spectroscopy (RICS), 611, 613f
Rater-scanned excitation light, 76
Rat tail collagen, 165
Rayleigh criterion, 89–90
Rayleigh frequency, 144
Rayleigh limit, 37f
fluorescence speckle microscopy and, 668–670
high-resolution imaging and, 534f, 535
Rayleigh picture, 37–38, 37f
Rayleigh quarter-wave criterion (RQNC), 39
Rayleigh transverse resolution formula, 38
Read noise, 377, 378, 379
Readout noise, 603
Readout speed, 58
ReA�, 292, 292f, 293, 294, 297
ReA�-EDT1, 292, 293
Receptor desensitization, 875, 877
labeling acetylatedollin, 223–224
Recipes
ACSF (artificial cerebrospinal fluid), 339
alternative antibody dilution solution with NDS, 717
alternative blocking solution with NGS, 717
BHK-21 cell culture medium, 297
bicarbonate buffer, 806
blocking solution with BSA, 718
BBR12 buffer, 608
Ca2+-free medium, 435
carbonate-bicarbonate buffer, 228
culture medium, 339
dissection solution, 339
dL buffer, 608
eution solution, 718
external patch clamp buffer, 732
fingive, 718
Gelvatol mounting medium, 178
glycerol antifade mounting medium, 178
HEBS (2×), 339
IF-blocking solution, 264
imaging buffer, 292
internal patch pipette buffer, 732
Km, 425
Mowiol mounting medium for fluorescent samples, 179
np-propyl gallate antifade medium, 179
p-phenylenediamine mounting medium, 179–180
PBS, 228
PBS*, 228
PCA solution, 529
PCD solution, 529
R, measuring solution, 425
Rm, measuring solution, 425
standard internal solution, 425
subbing solution, 718
TB5, 771
TCS, 340
Trololx solution, 529–530
Valap, 180, 228
viral DNA mix for lentiviral vectors, 340
viral DNA mix for MML retroviral vectors, 340
wash buffer, 719
Red cameleons, 428
Red fluorescent protein (RFP)
fluorescence imaging of gene expression, 453–454
RFP-aequorin fusion probe, 371, 372
Red (“Stokes”) shift, 74f
Red tide, 371
Refraction law of, 9
wave speed and, 9f
Rhod-2, as calcium indicator, 398
RGB image files, 263
Rhod-2, as calcium indicator, 398
Rhodamine
filter set, 34
in fluorescence optical-sectioning microscopy, 740–741, 741f, 742f
photobleaching resistance, 200
Rhodamine 123, labeling mitochondria with, 204–205
rhodamine-etr-bungarotoxin, labeling acetylcholine receptors with, 223–224
Rhodamine B, two-photon cross-sectional value, 468, 469f, 470f
rhodamine-4Ch, 193
rhodamine-DHPE, labeling membranes with, 189–190
rhodamine 6G
as calibration standard for FCS, 620
two-photon cross-sectional value, 469
rhodamine phalloidin, 199–200, 741
rhodamine-WGA, 193
X-Rhodamine, for fluorescence speckle microscopy (FSM), 671
RICS (raster image correlation spectroscopy), 611, 636
Rituximab, 254
Rluc (Renilla luciferae), 373, 374, 456f, 457–458
R, measuring solution (recipe), 425
R, measuring solution (recipe), 425
Rodents, brain tissue fixation and embedding (protocol), 702–704
Ronchi grating mask, 41, 735–739, 736f
Ruska, Ernst, 586
Safety
cautions, 923–927
chemicals, general properties of, 924–925
general cautions, 923–924
flourescence microscopy operation, 909–910
Saline electrophysiology-type dipping lenses, 254
Sample chamber
constructing for FIONA, 521–522, 522f
preparation for smFRET imaging, 483–487
Sample holder, PALM, 542, 543f
Sampling theorem, 49–50
Saponin, for cell permeabilization, 161, 280
Scalar-wave field, light as, 7–9
Scanning fluorescence correlation spectroscopy (SFCs), 611
Scanning tunneling microscope (STM), 586
Scattered light, confocal and multiphoton microscopy compared, 106–107
Schiff’s base, 160
StCMOS (scientific complementary metal-oxide semiconductor), 251
Scrambler, light, 21
Sea pansy (Renilla reniformis), 457
Second-harmonic generation (SHG), 271, 274t, 721–732
advantages and limitations, 731–732
application example, 727–732, 728f, 730f, 730t
description, 721–722
imaging of membrane potential (protocol), 723–726
experimental method, 725–726
imaging setup, 723–724, 723f
Sectioning tissues
description, 162–163
protocols
cryo-sectioning, 169–170
paraffin sections, 171–175
Self-similar lasers, 140
Seminoder vectors. See also Quantum dots (QDs)
digital micromirror device (DMD) and, 840, 840f
materials, 123–124
Semicontroller saturable absorber mirror (SEASAM), 137
Sensitivity, in immunofluorescence, 240
Sentinel lymph node (SLN) mapping with photoacoustic imaging, 814
SFCS (scanning fluorescence correlation spectroscopy), 611
Shading correction, 256
Shape index, 286f, 287
SHG. See Second-harmonic generation (SHG)
Short-pulse fiber lasers, 139–141
Shot noise, 377, 494–495
SHREC (single-molecule high-resolution colocalization), 509
SHRimP (single-molecule high-resolution imaging with photobleaching), 509, 515, 515f
Signal intensity, in confocal microscopy, 90–91
Signal optimization, for confocal microscopy, 90–92
Signal processing
reference texts, 144
spectral methods for functional brain imaging, 143–157
Signal-to-noise ratio (SNR)
binning for improvement in, 377 of bioluminescence imaging, 370
in confocal microscopy, 90–91
of DIC image, 29
in fluorescence microscopy, 39
in fluorescence optical-sectioning microscopy, 739
in ICS, 637
LED, 125
as measure of camera performance, 377
in PALM, 536–537
photon, 253, 253t
recombinant equorins and, 438
signal intensity and, 90–91
yellow camelion use and, 433
Silanization of slides, 168
Silicon detectors, quantum efficiency of, 91
Sine condition, 15–19, 18f
Single-lens reflex (SLR) cameras, 121
Single-mode fiber (SMF), 140
Single-molecule fluorescence speckle microscopy, 245
Single-molecule FRET (smFRET), 475–487,
489–505
detections, 476
alternating laser excitation (ALEX)
data analysis, 493–496
ALEX-based burst search, 494
ALEX-related histograms, 494
bleaching and blinking, 495, 495f
burst search, 493
detection and excitation volume mismatch, 496
fixed-bin burst search, 493
FRET efficiencies, measurement of, 496
random coincidence of diffusing species, 493–496
shot noise, 494–495
description, 490
design principles for setup, 492–493
emission, 492–493, 493f
excitation, 492
future prospects, 496–497
protocols
alignment of smFRET/LEX setup, 501–502
assembling the µ-ALEX setup, 498–500, 499f, 500f
sample preparation and data acquisition for µ-ALEX, 503–505
theory, 490–492, 491f
collection to other techniques, 476
data acquisition and analysis, 480–482
FRET calculation, 480
FRET histogram, 480
general analysis method, 481, 481f
image acquisition and data extraction, 480
time trajectories, 480
description of, 475, 489–490, 490f
experimental design, 476–478
fluorophore choice, 476–477, 477f
location for attachment of fluorescent labels, 477
surface preparation, 477–478, 478f
future directions, 481–482
protocols
sample chamber preparation, 483–487
total internal reflection (TIR) microscopy setup, 478–480
detection device, 480
emission optics, 479, 479f
excitation optics, 478–479
Single-molecule high-resolution colocalization (SHREC), 509
Single-molecule high-resolution imaging with photon-shutting (SHRMp), 509, 515, 515f
Single-photon emission computed tomography (SPECT), 452
Single-plane illumination microscopy (SPIM), 758, 787–806
advantages of, 790, 806
applications, 790–793, 792f
imaging 3D cell biology specimens, 792–793
imaging setup, 797, 799f, 799f, 800f
layout of, 791f
mounting specimens for, 793, 795–797, 796f
optical sectioning, 790
protocols
imaging cellular spheroids with a SPIM, 794–801
capillary holders, 796f, 798f
imaging setup, 797, 799f, 799f, 800f
materials, 795
methods, 795–800
mounting spheroids for imaging, 795–797, 796f, 797f
specimen storage, 798f
troubleshooting, 801
imaging MDCK cysts with a SPIM, 802–805
materials, 802–803
preparing and imaging MDCK cysts in collagen, 803–804, 804f
preparing and imaging MDCK cysts in matrigel, 804–805
recording parameters, 799f
Single-walled carbon nanotube (SWNT), photoacoustic imaging with, 814, 816–817
Singular-value decomposition, 152, 154, 156
Sleipan taper, 145, 146f, 147
Slides
cleaning
for FIONA (fluorescence imaging with one-nanometer accuracy), 523–524
for smFRET, 484
for fluorescence microscopy
coating, 167–168
preparation, 165–166
mounting live cells onto, 184–185
SLM. See Spatial light modulator (SLM)
Slow axis, 686, 696
smFRET. See Single-molecule FRET (smFRET)
SnapTag, 399
Spatial light modulator (SLM)
Spatial image correlation spectroscopy, 629f, 630f
Spatial Fourier analysis-fluorescence recovery after photobleaching (SFA-FRAP)
Slow axis, 686, 696
Spatial autocorrelation function, ICS and, 452
Software. See specific applications
Soliton fiber lasers, 140
Solitons, 137, 140
Space-frequency singular-value decomposition, 156
Space multiplexing, 862
Space-time singular-value decomposition and denoising, 152–154, 153f
SPA-FRAP. See Spatial Fourier analysis-fluorescence recovery after photobleaching (SFA-FRAP)
Spekholzer, W., 761
Speckles. See Fluorescent speckle microscopy (FSM)
SPECT (single-photon emission computed tomography), 452
Spectral methods for functional brain imaging, 143–157
case examples
cohere between two signals, 149–152, 150f
space-time singular-value decomposition and denoising, 152–154, 153f
spectral power, 147–149, 148f
spectrograms and space-frequency singular-value decomposition, 154–156, 155f
data collection process, 144–147
overview, 143–144
Spectral power, 147–149
Spectral range, 59
Spectrogram, 154, 155f
Spectroscopy. See specific applications
Spherical aberration caused by refractive index mismatch between immersion fluid and specimen, 17
description of, 51
in 3D STORM imaging, 566–567
oil-immersion objectives and, 272
Spheroids, imaging with single-plane illumination microscopy (SPIM), 794–801
SPIM. See Single-plane illumination microscopy (SPIM)
Spine motility, analysis of newborn granule cell, 337–338
Spinning-disk-based microscope system, 100–102, 101f
Spinning-disk confocal microscope, LED use in, 125
Spliceosome-mediated RNA trans-splicing (SMaRT), 458, 458f
Spontaneous activation, with photoswitchable fluorophores, 533, 538
Spontaneous Raman scattering spectroscopy, 746
Square wave electroprotrators, 345
sREACH, 448
SRS. See Stimulated Raman scattering (SRS)
StackReg ImageJ plugin, 715
Standard deviation/mean, as measure of camera performance, 377
Standard error, calculation of, 149, 151–152
Stochastic optical reconstruction microscopy

STM (scanning tunneling microscope), 586

Stimulated emission depletion (STED)

STICS (spatiotemporal image correlation spectroscopy), 634–635, 634f

Stimulated Raman scattering (SRS), 747–748

Stem cells

Standard internal solution (recipe), 425

Stem cells

Stem cell fate analysis of neural stem cells (NSCs), 528–329

Renilla luciferase (Rluc)-based gene expression imaging, 457–458

STICS (spatiotemporal image correlation spectroscopy), 634–635, 634f

Stimulated emission depletion (STED) fluorophores, 238

Stimulated Raman scattering (SRS), 747–748, 748, 749, 749f, 750, 751–752, 753, 753f

STM (scanning tunneling microscope), 586–587

Stochastic optical reconstruction microscopy (STORM), 547–573

data analysis, 556–561

drift correction, 560

filtering, 560

image rendering, 560–561

peak fitting, 559

peak identification, 558, 559f

trail generation, 560

experimental procedure, 556–558

data collection, 557–558

imaging medium, 557

sample preparation, 556–557

fluorophore-Fab conjugates and, 238

imaging of cultured cells, 561, 562f, 563f

imaging procedure, 550, 550f

Stokes shift, 127

STORM. See Stochastic optical reconstruction microscopy (STORM)

Streptavidin, quantum dot conjugation to, 580, 581–582, 581f

Structured illumination, 99

Structured detection, 99

Structured illumination microscopy, 42, 98–99

Structured illumination microscopy (SIM), 42

SuperFect, 344

Supersolution imaging techniques, 548

Sutter Instruments, 348, 355

Targeted recombinant aequorins, 437–441

Tandem-scanning microscope, 101–102, 101f

Taper, 145, 147, 151, 156

Targeted recombiant aequorins, 437–441

Taste buds, immunofluorescence imaging of, 258f

Tat, 453

TBS (recipe), 771

T cells

adoptive transfer by injection, 276f

induction of an immune response for imaging APC-T-cell interactions, 278–281

migration velocity, 272

multicolor tracking of single molecules in a T cell membrane, 604–605, 605f

TCS (recipe), 340

TDE (thiodiethanol) mounting media, 246

TIR (total internal reflection)

Three-dimensional imaging

Third-harmonic generation microscopy, 136

of dynamics of biological processes via fast confocal microscopy, 823–830

light-sheet-based fluorescence microscopy (LSFM), 787–806

Three-photon excitation, 467, 468

TICS (temporal ICD), 631–634, 632f, 637

TIFF images, for publication of immunofluorescence microscopy, 263

Time-correlated single-photon-counting (TCSPC), 642, 644–646, 647

Time-correlated single-photon-counting (TCSPC) fluorescence lifetime imaging microscopy, 254, 444, 445f, 446

Time-domain fluorescence lifetime imaging microscopy, 641–653

absence of FRET signal, reasons for, 652–653

data analysis, 647–650

fitting data from TCSPC-FLIM system, 647, 648f

minimal fraction of interacting donor (m_f), 649, 650–651, 650f

number of interacting particles, 650

relative concentration, 650

TriM-FLIM data, 647–649, 648f

FRET couple, choice of, 651–652, 651f, 652f

multifocal multiphoton FLIM (TriM-FLIM) data treatment, 647–649, 648f

setup, 646, 646f

photobleaching effects, 652

principles of FRET quantification, 642–644

time-correlated single photon counting (TCSPC), 642, 644–646, 645f, 647, 648f

Time series, 144, 145, 150, 151

Time trajectories, smFRET and, 480

TIR. See Total internal reflection (TIR)

TIRFM. See Total internal reflection fluorescence microscopy (TIRFM)

Tisapphire laser. See Titaniumsapphire laser

Tissue fixation. See Fixation

Tissues

fixation and permeabilization of, 160–162

gene expression imaging in, 451–461

imaging cells deep within live using in vivo optical microendoscopy, 773–785

sectioning of, 162–163

Tissue sectioning protocols
cryosectioning, 169–170

paraffin sections, 171–175

Tissue sections

immunofluorescence for subcellular localization of two or more antigens (protocol), 256–258

tyramide signal amplification of two-antigen immunofluorescence (protocol), 816–817

wrinkling of, 712

Tissue Tek 3-octanol Compound, 169–170

femtosecond laser, 272

in high-speed two-photon imaging, 832

in MPFRAP, 656f, 657

for TCSPC-FLIM, 645

in TriM-FLIM, 646

TMRE (tetramethylrhodamine ethyl ester) labeling mitochondria with, 206–207, 208f
as membrane potential-sensitive fluorophore, 205, 207
TMRM (tetramethylrhodamine methyl ester)
labeling mitochondria with, 206–207, 208f
as membrane potential-sensitive fluorophore, 205, 207
TMS-DPH (trimethylamine-diphenylhexatriene),
labeling plasma membrane with, 191–192
Tomography
array, 697–719
origin of term, 698
Tonsil tissue, double immunofluorescent
staining, 261, 261f
To-Pro-3, 256
Tomography
T o-Pro-3, 256
Totally internal reflection fluorescence microscopy
excitation optics, 478–479
emission optics, 479, 479f
detection device, 480
Universal magnification principle, 191–192
bioluminescence imaging,
606–608
kinesin and dynein (protocol),
510–511, 517–520
naometer accuracy), 507–508,
517–520, 517f
TurboReg, 715–716
Tumors, photoacoustic imaging of, 813, 817–818
T烟花爆竹, 245
objective-type, 599, 599f, 600
value), 599f
Transverse magnification, 5–6, 5t
Transverse resolution, in fluorescence
microscopy, 38–39
Trastuzumab, 254
TRITC-labeled dextran, 225
Trich X-100, for cell permeabilization, 255
as permeabilization agent, 161, 161f, 163f
Trolux solution, 32, 91
Tryptophan, autofluorescence of, 622
Triphenyl tetrazolium chloride (TTC), 254
Troponin C, 428
Trolox solution, 32, 91
Tryptophan, autofluorescence of, 622
TurboReg, 715–716
Ultramicroscopy, 757–772
Ubiquitin conjugation, 319–323
Ubiquitin-mediated fluorescence
complementation (UbFC), 319–323
controls, 320
design of constructs, 320
effects of fluorescent protein fragment
fusions on ubiquitin-family
peptide conjugation to substrate
proteins, 320
multicolor, 320
principle, 319–320, 319f
protocol, 321–323
simultaneous visualization of conjugates
formed by different ubiquitin-
family peptides, 320
Ultramicroscopy, 757–772
application, 765–766, 765f
immunostaining mouse embryos, 765
lectin-labeled mouse organs, 766
XFP-expressing transgenic mice, 766
Two-photon imaging
fluorophores labeling techniques commonly
used for, 274f
high-speed, 831–838
future prospects, 837
overview, 831–832
setup, 832–837, 832f
detectors, 837
2D scanning systems, 833–835, 834f
3D scanning systems, 834f, 835–836, 836f
functional imaging systems, 834–835, 834f
light source, 832–837
microscopes, 836
scanning mechanism, 833
structural imaging systems, 833–834, 834f
in vivo optical microendoscopy, 778
Two-photon laser-scanning microscopy
(2pLSM), FLIM combined with, 443–449
Two-photon microscopy
application of custom-made, 114, 115f
caged neurotransmitters and, 872
conversion of standard confocal microscope
to, 111–115, 112f
advantages and limitations, 114
fluorescence detection, 113–114
laser, 111
modification summary, 114
tumors, photoacoustic imaging of, 813, 817–818
fluorimetric assays of, 114
Turtle visual cortex, delineation of wave
structures, 766
Turn angle, 286f, 287
Turner X-100, for cell permeabilization, 255
as permeabilization agent, 161, 161f, 163f
Tyramide signal amplification (TSA), 239, 242,
253
of two-antigen immunofluorescence of tissue
sections (protocol), 259–262
Ubiquitin conjugation, 319–323
Ubiquitin-mediated fluorescence
complementation (UbFC), 319–323
controls, 320
design of constructs, 320
effects of fluorescent protein fragment
fusions on ubiquitin-family
peptide conjugation to substrate
proteins, 320
multicolor, 320
principle, 319–320, 319f
protocol, 321–323
simultaneous visualization of conjugates
formed by different ubiquitin-
family peptides, 320
Ultrascan, 757–772
application, 765–766, 765f
immunostaining mouse embryos, 765
lectin-labeled mouse organs, 766
XFP-expressing transgenic mice, 766
Two-photon imaging
fluorophores labeling techniques commonly
used for, 274f
high-speed, 831–838
future prospects, 837
overview, 831–832
setup, 832–837, 832f
detectors, 837
2D scanning systems, 833–835, 834f
3D scanning systems, 834f, 835–836, 836f
functional imaging systems, 834–835, 834f
light source, 832–837
microscopes, 836
scanning mechanism, 833
structural imaging systems, 833–834, 834f
in vivo optical microendoscopy, 778
Two-photon laser-scanning microscopy
(2pLSM), FLIM combined with, 443–449
Two-photon microscopy
application of custom-made, 114, 115f
caged neurotransmitters and, 872
conversion of standard confocal microscope
to, 111–115, 112f
advantages and limitations, 114
fluorescence detection, 113–114
laser, 111
modification summary, 114
tumors, photoacoustic imaging of, 813, 817–818
fluorimetric assays of, 114
Turtle visual cortex, delineation of wave
structures, 766
Turn angle, 286f, 287
Turner X-100, for cell permeabilization, 255
as permeabilization agent, 161, 161f, 163f
Tyramide signal amplification (TSA), 239, 242,
253
of two-antigen immunofluorescence of tissue
sections (protocol), 259–262
Ubiquitin conjugation, 319–323
Ubiquitin-mediated fluorescence
complementation (UbFC), 319–323
controls, 320
design of constructs, 320
effects of fluorescent protein fragment
fusions on ubiquitin-family
peptide conjugation to substrate
proteins, 320
multicolor, 320
principle, 319–320, 319f
protocol, 321–323
simultaneous visualization of conjugates
formed by different ubiquitin-
family peptides, 320
Ultrascan, 757–772
application, 765–766, 765f
immunostaining mouse embryos, 765
lectin-labeled mouse organs, 766
XFP-expressing transgenic mice, 766
Two-photon imaging
fluorophores labeling techniques commonly
used for, 274f
high-speed, 831–838
future prospects, 837
overview, 831–832
setup, 832–837, 832f
detectors, 837
2D scanning systems, 833–835, 834f
3D scanning systems, 834f, 835–836, 836f
functional imaging systems, 834–835, 834f
light source, 832–837
microscopes, 836
scanning mechanism, 833
structural imaging systems, 833–834, 834f
in vivo optical microendoscopy, 778
Two-photon laser-scanning microscopy
(2pLSM), FLIM combined with, 443–449
Two-photon microscopy
application of custom-made, 114, 115f
caged neurotransmitters and, 872
conversion of standard confocal microscope
to, 111–115, 112f
advantages and limitations, 114
fluorescence detection, 113–114
laser, 111
modification summary, 114
tumors, photoacoustic imaging of, 813, 817–818
fluorimetric assays of, 114
Turtle visual cortex, delineation of wave
structures, 766
Turn angle, 286f, 287
Turner X-100, for cell permeabilization, 255
as permeabilization agent, 161, 161f, 163f
Tyramide signal amplification (TSA), 239, 242,
253
of two-antigen immunofluorescence of tissue
sections (protocol), 259–262
Ubiquitin conjugation, 319–323
Ubiquitin-mediated fluorescence
complementation (UbFC), 319–323
controls, 320
design of constructs, 320
effects of fluorescent protein fragment
fusions on ubiquitin-family
peptide conjugation to substrate
proteins, 320
multicolor, 320
principle, 319–320, 319f
protocol, 321–323
simultaneous visualization of conjugates
formed by different ubiquitin-
family peptides, 320
Ultrascan, 757–772
application, 765–766, 765f
immunostaining mouse embryos, 765
lectin-labeled mouse organs, 766
XFP-expressing transgenic mice, 766

Ultramicroscopy (Continued)
future directions, 766
overview, 757–758
principle of, 758–763, 758f
effects of medium in specimen chamber on beam propagation, 759–761, 760f, 761f
image enhancement by deconvolution, 761, 762f, 763
specimen dehydration and clearing, 761, 762f
theory of light sheet generation by a single cylinder lens, 759, 760f
protocols, 767–771
dehydration and clearing of adult Drosophila for ultramicroscopy, 767
dehydration and clearing of dissected mouse hippocampi for ultramicroscopy, 770
dehydration and clearing of mouse embryos for ultramicroscopy, 768
dehydration and clearing of whole mouse brains for ultramicroscopy, 769
immunostaining mouse embryos, 771
setup, 763–764
camera and software, 764
mechanical components, 763–764
optical components, 764
schematic, 765f
Ultramicrotome, 698, 705–706
Uncaging with visible light, 897–902
Uncouplers of oxidative phosphorylation, 205, 207
U-tube cell-flow device, 874–875

V
Valap
recipe, 180, 228
use of, 176–177
Van Leeuwenhoek, Antonie, 586
Vascular endothelial growth factor (VEGF) promoter, 452
VectaMount, 261
Venus, 428
Venus fragments, in BiFC analysis, 304, 305f
Vessel diameter, rhythms in, 147–149, 148f
Vibratome, 337
Video adapters, 64–65
Video cameras, 59–63
Video camera, 58
Video Spot Tracker, 513
Vimentin filaments, STORM imaging of, 561, 563f
Video-enhanced contrast microscopy, 57–69
applications, 67
components of, 57, 67
procedure (epifluorescence microscopy), 67–68
Video microscopy, 57–69
definitions, 58–59
image processors, 63–64
infrared, 79–84
overview, 57–58
procedures
epifluorescence microscopy, 67–68
 photon-counting imaging, 68–69
video-enhanced contrast microscopy, 66
video adapters, 64–65
video cameras, 59–63
Video rate camera, 38
Video-enhanced contrast microscopy (VEC), 21
Video-enhanced contrast microscopy (VEC) applications of, 65
components of, 57, 65
procedure (VEC employing DIC microscopy), 66–67
overview, 877–878
reagent preparation, 878
Video microscopy, 57–69
W
Wash buffer (recipe), 719
Water-dipping objectives, for immunoimaging, 185
Water immersion (WI), 3
Water immersion objective, 15, 17
X
Xanthene dyes, 469, 470f
Xenon arc lamp, 34–35, 118, 120, 241
Xenon flash lamp, 884
X-gal, 817
X-ray crystallography, 42
X-ray diffraction, 12
X-Rhodamine, for fluorescence speckle microscopy (FSM), 671
X-Windows computational optical sectioning microscopy (XCOSM), 46
Xylazine, 781
Xylene
for lipid removal from tissues, 173, 174
toxicity of, 171
Yellow cameleons
description, 427–430
development and performance of YC3.60, 429f, 431–433
Yellow fluorescent protein (YFP)
editioning protein, 433
schematics of, 430f
Yellow fluorescent protein (YFP) enhanced yellow fluorescent protein (eYFP)
eYFP-R luciferase), 374
fluorescence switching, 550
Ytterbium (Yb) lasers, 139
Ytterbium (Yb) lasers, 139
Z
Zernike phase contrast, 22–23
6 Spinning-Disk Systems

Tony Wilson
Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom

ABSTRACT

In this chapter, we discuss the origin of optical sectioning in optical microscopy in terms of the structure of the illumination and the structure of the detection. This parallel approach to image formation allows the introduction of high-speed light efficient approaches to obtaining optically sectioned images in real time, using conventional microscope illumination systems.

INTRODUCTION

The popularity of the confocal microscope in life science laboratories around the world is undoubtedly due to its ability to permit volume objects to be imaged and to be rendered in three dimensions. It is important to realize that the confocal microscope itself does not produce three-dimensional images. Indeed, it does the opposite. The critical property that the confocal microscope possesses, which the conventional microscope does not, is its ability to image efficiently (and in-focus) only those regions of a volume specimen that lie within a thin section in the focal region of the microscope. In other words, it is able to reject (i.e., vastly attenuate) light originating from out-of-focus regions of the specimen. To image a three-dimensional volume of a thick specimen, it is necessary to take a whole series of such thin optical sections as the specimen is moved axially through the focal region. Once this through-focus series of optically sectioned images has been recorded, it is a matter of computer processing to decide how the three-dimensional information is to be presented.

Any optical microscope that is to be used to produce three-dimensional images must have the ability to record a thin optical section. There are many methods for producing optical sections, of which the confocal optical system is just one. We shall review these methods and shall describe a number of convenient methods of implementation that can lead to, among other things, real-time image formation.

OPTICAL SECTIONING

In the following discussion, we shall restrict our attention to bright-field or (single-photon) fluorescence imaging in which the optical sectioning results from the optical system of the microscope rather
than by any nonlinear interaction between the probe light and the specimen. To be able to make general remarks about various optical systems, we will describe the design in terms of the structure of the illumination and in terms of the structure of the detection. To put these terms in context, we note that, in the conventional fluorescence microscope, we essentially illuminate the specimen uniformly and image the fluorescence emitted by the specimen to an image plane in which we view the image intensity either directly by eye or via a charge-coupled device (CCD) camera. In this case, the structure of the illumination is uniform as is the structure of the detection, and the microscope does not show optical sectioning. In the confocal microscope, on the other hand, we use point illumination and point detection to introduce optical sectioning. The optical principle can be seen in Figure 1, where we see that the action of the point detector is to block light that originates in out-of-focus regions from passing through the pinhole (Wilson and Sheppard 1984; Wilson 1990). Its efficacy in achieving this, which also determines the axial width of the optical section, clearly depends on the size and the shape of the pinhole used. An infinitely large pinhole, for example, would block no light and, hence, provide no optical sectioning. This effect is discussed in detail elsewhere (Wilson 1989, 1995; Wilson and Carlini 1987). The system illustrated in Figure 1 might be regarded as the ultimate in structured illumination and detection—point illumination and point detection—and has resulted in the desired optical sectioning but has only produced an image of a single point of the specimen. To produce an image of a finite region of the specimen, it is necessary to introduce scanning so as to probe the entire specimen. In general terms, we have introduced a particular structure to both the illumination and the detection, which we might also refer to as modulation, such that the optical system shows optical sectioning. We must then remove any undesirable side effects of this modulation to obtain the desired image. In this particular case, the modulation results in a restriction of the field of view to a single point; hence, a demodulation stage consisting of scanning is required to restore the field of view. We shall return to practical implementations of the demodulation below, but we note that there are two basic approaches. In the first, a single point source–point detector confocal system is used together with a scanning mechanism designed to scan a single focused spot of light with respect to the specimen. In the second approach, a number of confocal systems is constructed in parallel. These serve to produce many focused spots of light, which are used to image different parts of the specimen simultaneously. This is achieved by using an aperture disk consisting of many pinholes.

Another way to think about optical sectioning is in terms of the way in which the spatial frequencies present in the specimen are imaged. In essence, we describe the fluorescence distribution within the specimen in terms of its spatial frequency spectrum (Fourier content) and ask how each of these spatial frequency components is imaged by the optical system. The optical transfer function of the optical system provides the answer to this question because it describes how efficiently each spatial frequency is imaged. A requirement that the system show optical sectioning might be that the contrast of all spatial frequencies must attenuate as the microscope is defocused. Figure 2A shows
The optical transfer function of a confocal fluorescence microscope, in which we see that the contrast of all spatial frequencies attenuates with increasing defocus. Figure 2B, on the other hand, shows the equivalent function for the conventional fluorescence microscope. In this case, we see that it is only the zero spatial frequency whose contrast does not attenuate with increasing defocus. The contrast of all other spatial frequencies is seen to reduce as the degree of defocus increases.

Although the aperture disk consisting of many pinholes was described above as a natural way to parallelize many confocal microscopes, it may also be thought of as acting like a mask that causes the whole specimen to be illuminated by a particular structure. It is natural, therefore, to ask whether there are other simple forms of structure to the illumination that may be used to introduce optical sectioning. If we modify the illumination system of the microscope so as to project a single spatial frequency grid pattern onto the object, the microscope will then image efficiently only that portion of the object where the grid pattern is in focus (Fig. 2B). We will thus obtain an optically sectioned image of the object but with the (unwanted) grid pattern superimposed. The rate of attenuation with defocus or optical sectioning strength will, of course, depend on the particular spatial frequency that is projected onto the object (Fig. 2B). For example, a 40-µm pitch grid imaged using a 63x, 1.4-NA objective lens with light of wavelength 0.5 µm yields \(v = 0.56 \), whereas an 80-µm pitch grid yields \(v = 0.28 \) and a 20-µm pitch grid gives \(v = 1.12 \). Here we have used the structure of the illumination (harmonic modulation) to introduce optical sectioning. The price is that the optical section is now delineated or labeled by that portion of the image where the superimposed grid pattern is visible. It is now necessary to introduce a demodulation stage whereby the out-of-focus regions as well as the grid pattern are removed from the “raw” image to reveal the desired optically sectioned image. This may be done in two ways, computationally or optically. The computational approach typically requires that three raw images be taken, corresponding to three different spatial positions of the illumination grid. This is the approach taken in several commercial structured illumination systems such as the OptiGrid system from Qioptiq (Neil et al. 1997). The alternative optical demodulation technique, which will be discussed in this chapter, is to combine harmonic structured illumination with harmonic structured detection. In this case an identical mask is used for both the illumination and detection. Demodulation is carried out by scanning the masks in synchronism.

We conclude this section by noting that a system with uniform structure of illumination and detection—the conventional microscope—does not exhibit optical sectioning, whereas one with point illumination and point detection—the confocal system—does exhibit optical sectioning. An equivalent way of saying this is to say that the conventional system employs zero spatial frequency illumination and detection whereas the point source/detector confocal system employs full spatial frequency illumination and detection. The harmonic approach we have just discussed, on the other hand, lies somewhere between these approaches, because only one spatial frequency is used for both the illumination and detection. The nature of the illumination/detection used in the last two cases requires that a further demodulation step—often achieved by scanning—be performed to provide a full field optically sectioned image.

FIGURE 2. (A) The confocal optical transfer function as a function of the normalized spatial frequency for a number of values of defocus \(u \). The normalized defocus \(u \) is related to the actual defocus \(z \) by \(u = 4knz \sin^2(\alpha/2) \) in which the numerical aperture (NA) is given by \(NA = n \sin(\alpha) \). The normalized spatial frequency \(v \) is related to the actual spatial frequency \(f \) measured in the focal plane via \(v = f\lambda/NA \). We note that all spatial frequencies attenuate with increasing defocus. (B) The optical transfer function of the conventional microscope as a function of the normalized spatial frequency for a number of values of defocus \(u \). Note that all spatial frequencies attenuate with increasing defocus apart from the zero spatial frequency case.
We shall now discuss the practical implementation of these two approaches to achieve optical sectioning. We begin with the traditional confocal system.

It is clear from the previous discussion that an optical system consisting of a single point source and single point detector serves to discriminate against light originating from out-of-focus planes. Figure 1 shows the generic optical system. The light source is typically a laser, because traditional microscope illumination systems are insufficiently bright. A photomultiplier tube has usually been used as the photodetector. Because this system probes only one point of the specimen, scanning must be used to obtain an image of a whole optical section. This may be achieved in a variety of ways. The specimen may be physically scanned with respect to the fixed focal spot. Alternatively the objective lens may also be scanned. These approaches have advantages from both the optical performance and optical design points of view but are generally considered to be impractical. In most commercial designs, therefore, the specimen is fixed and the scanning is achieved by scanning the focused spot of light across the fixed specimen by the use of galvonometer mirror scanners. This allows an optical section to be easily recorded. To record the next optical section, however, it is necessary to physically move the specimen axially to bring the next region into the focal volume of the confocal microscope. Commercial systems do not allow this important z-scanning step to be performed quickly, so this represents a bottleneck in the speed with which a through-focus set of images may be obtained. Recent work has shown that high-speed optical refocusing can be achieved, and hence this bottleneck may be removed (Botcherby et al. 2007). Although the layout of Figure 1 is typical, there are problems to be overcome relating to system alignment in the sense that the detector pinhole must be located in a position optically equivalent to the source pinhole. These problems may be resolved if a reciprocal geometry is employed in which the same pinhole is used both as source and detector pinhole. In practice these systems are often more easily implemented when a single-mode optical fiber replaces the pinhole (Wilson and Kimura 1991). However, all of these approaches involve the use of one confocal optical system, and the image is obtained serially by the appropriate scanning of the spot in three dimensions with respect to the specimen.

An advantage may be gained by building an optical layout consisting of many confocal systems lying side by side. In this way many parts of the specimen will be imaged confocally at the same time. This has the advantage of increasing image acquisition speed as well as dispensing with the need to use laser illumination. Each pinhole acts as both the illumination and detection pinhole and so the system acts rather like a large number of parallel, reciprocal geometry, confocal microscopes, each imaging a specific point on the object. However, we need to remember that the confocal system achieves depth discrimination by blocking out-of-focus light reaching the image by the use of a limiting pinhole detector. This observation leads us to conclude that the neighboring confocal systems must be placed sufficiently far apart that any out-of-focus light from one confocal system is not collected by an adjacent system. In other words, we must prevent cross talk between neighboring confocal systems. In practice this means that the pinholes must be placed on the order of 10 times their diameters apart, which has two immediate consequences. First, only a small amount—typically 1%—of the available light is used for imaging, and, second, the wide spacing of the pinholes means that the object is only sparsely probed. To probe—and hence image—the whole object, it is usual to arrange the pinhole apertures in a series of Archimedean spirals and to rotate the (Nipkow) disk. The generic layout of any system that is designed to contain many confocal systems operating in parallel is shown in Figure 3A. The original idea for such an approach goes back to Mojmír Petrán in the late 1960s (Petrán et al. 1968). A single-sided variant was subsequently introduced by Kino and his colleagues (Xiao and Kino 1987). The key element to these systems is a spinning Nipkow disk containing many pinholes. These systems are capable of producing high-quality images without the need to use laser illumination in real time at both television rate and higher imaging speeds. A further development, which does, however, require the use of laser illumination and, hence, restricts the use to fluorescence imaging, is to introduce an array of microlenses to concentrate the illumination laser light into the source pinholes (Ichihara et al. 1996).
One approach to make greater use of the available light is to place the pinholes closer together. However, this means that cross talk between the neighboring confocal systems inevitably occurs; hence, a method must be devised to prevent this. To achieve this goal, the Nipkow disk of the tandem-scanning microscope is replaced with an aperture mask consisting of many pinholes placed as close together as possible. This aperture mask has the property that any of its pinholes can be opened and closed independently of the others in any desired time sequence. This might be achieved, for
example, by using a liquid-crystal spatial light modulator. Because we require there to be no cross talk between the many parallel confocal systems, it is necessary to use a sequence of openings and closings of each pinhole that is completely uncorrelated with the openings and the closings of all the other pinholes. There are many such orthonormal sequences available. However, they all require the use of both positive and negative numbers, and, unfortunately, we cannot have a negative intensity of light! The pinhole is either open, which corresponds to 1, or closed, which corresponds to 0. There is no position that can correspond to –1. The way to avoid the dilemma is to obtain the confocal signal indirectly. To use a particular orthonormal sequence \(b_i(t) \) of plus and minus 1s, for the \(i \)th pinhole, we must add a constant offset to the desired sequence to make a sequence of positive numbers, which can be encoded in terms of pinhole opening and closing. Thus, we encode each of the pinhole openings and closings as \((1 + b_i(t))/2 \), which will correspond to open (1) when \(b_i(t) = 1 \) and to close (0) when \(b_i(t) = -1 \). The effect of adding the constant offset to the desired sequence is to produce a composite image that will be partly confocal because of the \(b_i(t) \) terms and partly conventional because of the constant term. The method of operation is now clear. We first take an image with the pinholes encoded as we have just discussed and so obtain a composite conventional plus confocal image. We then switch all the pinholes to the open state to obtain a conventional image. It is then a simple matter to subtract the two images in real time using a computer to produce the confocal image.

Although this approach may be implemented using a liquid-crystal spatial light modulator, it is cheaper and simpler merely to impress the correlation codes photolithographically on a disk and to rotate the disk so that the transmissivity at any picture point varies according to the desired orthonormal sequence. A blank sector may be used to provide the conventional image. If this approach is adopted, then all that is required is to replace the single-sided Nipkow disk of the tandem-scanning microscope with a suitably encoded aperture disk (Juskaitis et al. 1996a,b). We note that the coded sector on the disk may be coded so as to provide the appropriate correlation codes, or, alternatively, it may consist of a pattern of grid lines to simulate the harmonic illumination/detection case (Neil et al. 1998).

Double-Sided Operation

We have seen that the image obtained from the coded sector of the disk is a composite image from which the conventional image needs to be removed. If, rather than use a blank sector, we were to encode the whole disk such that the image we obtained may be written as \(I_1 = I_{\text{conv}} + I_{\text{conf}} \), we would need to find another way to remove the conventional image. One approach is suggested in Figure 3B in which a second light source is used. In this case, a composite image of the form \(I_2 = I_{\text{conv}} - I_{\text{conf}} \) is obtained. It is clear that a confocal image \(I_1 - I_2 = 2I_{\text{conf}} \) may be readily extracted with a more efficient use of light than in the single-sided disk case in which \(I_1 \) and \(I_{\text{conv}} \) are obtained sequentially.

Although such an approach is entirely feasible, it does require extremely careful design so as to provide equivalent uniform illumination at each flip of the mirror. A preferred approach might be to use a single light source and a single camera. The optical system (Fig. 3C) would be such that the camera recorded the two required images simultaneously, thus eliminating any possibility of motion and other artifacts between the capture of the two required raw images. We note that these systems operate well with standard microscope illuminators (e.g., Exfo Inc.) and standard CCD cameras, producing images that are directly comparable to those taken with traditional laser-based confocal systems. Figure 4 shows a typical through-focus series of images together with a standard three-dimensional rendering.

CONCLUSION

The confocal microscope is now firmly established as a workhorse instrument in laboratories throughout the world because of its ability to enable volume specimens to be imaged in three dimensions. However, there is still much work to be performed to make these instruments suitable for high-speed
imaging of living specimens. Further advances will require a combination of new contrast mechanisms together with advances in instrument design. This chapter has described a parallelization of the traditional confocal principle so as to permit real-time confocal imaging without the need for laser illumination. The concept of structured illumination and structured detection has been introduced to stimulate the search for alternative methods of image encoding to reveal optical sectioning.

REFERENCES

Array Tomography
High-Resolution Three-Dimensional Immunofluorescence

Kristina D. Micheva, Nancy O’Rourke, Brad Busse, and Stephen J Smith
Department of Molecular and Cellular Physiology, Stanford University School of Medicine,
Stanford, California 94305

ABSTRACT

Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue specimen are cut using an ultramicrotome, bonded in ordered array to a glass coverslip, stained as desired, and then imaged. The resulting two-dimensional image tiles can then be computationally reconstructed into threedimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections provides for high-quality, rapid staining and imaging, whereas the array format provides for reliable and convenient section handling, staining, and automated imaging. In addition, the array’s physical stability permits the acquisition and registration of images from repeated cycles of staining, imaging, and stain elution and from imaging by multiple modalities (e.g., fluorescence and electron microscopy). Array tomography offers high resolution, depth invariance, and molecular discrimination, which justify the relatively difficult tomography array fabrication procedures. With array tomography it is possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. This chapter will describe one simple implementation of fluorescence array tomography and provide protocols for array tomography specimen preparation, image acquisition, and image reconstruction.

INTRODUCTION

Our understanding of tissue function is constrained by incomplete knowledge of tissue structure and molecular architecture. Genetics, physiology, and cell biology make it overwhelmingly clear that all cell and tissue function depends critically on the composition and precise three-dimensional configuration of subcellular organelles and supramolecular complexes, and that such structures may consist of very large numbers of distinct molecular species. Unfortunately, the intricacies of tissue molecular architecture badly outstrip the analytical capability of all presently known tissue imaging methods.
Array tomography is a new high-resolution, three-dimensional microscopy method based on constructing and imaging two-dimensional arrays of ultrathin (70–200 nm thickness) specimen sections on solid substrates. (The word “tomography” derives from the Greek words tomos, to cut or section, and graphein, to write: The moniker “array tomography” thus simply connotes the “writing” of a volume image from an array of slices.) Array tomography allows immunofluorescence imaging of tissue samples with resolution, quantitative reliability, and antibody multiplexing capacity that is greatly superior to previous tissue immunofluorescence methods (Micheva and Smith 2007). Array tomography was developed with neuroscience applications in mind (e.g., Smith 2007; Stephens et al. 2007; Koffie et al. 2009), and the following description will be illustrated with examples from neuroscience and particularly from studies of synapses and circuits in rodent brain.

ARRAY TOMOGRAPHY PROCEDURES

A sequence of eight steps for a very basic array tomography protocol is illustrated in Figure 1. Array tomography begins with (Step 1) the chemical fixation of the specimen, followed by (Step 2) dissection and embedding in resin (LR White). Resin-embedded specimen blocks are then (Step 3) mounted in an ultramicrotome chuck, trimmed, and prepared for ultrathin sectioning. Block preparation includes careful trimming of the block edges and application of a tacky adhesive to the top and bottom block edges. As shown in the magnified detail of Step 3, this adhesive causes the spontaneous formation of a stable splice between successive serial sections as they are cut by the ultramicrotome's diamond knife blade. The automated cycling of a standard ultramicrotome produces automatically a ribbon up to 45 mm in length, which may consist of more than 100 serial sections held on a water surface. Ribbons are then manually transferred to the surface of a specially coated glass coverslip (Step 4). The resulting array can be stained using antibodies or any other desired reagents (Step 5). After immunostaining, arrays can be imaged using fluorescence microscopy (Step 6). The minimal thickness of array sections promotes very rapid and excellent staining and imaging, whereas the array format promotes convenient and reliable handling of large numbers of serial sections. The individual two-dimensional section images are then computationally stitched and aligned into volumetric image stacks (Step 7) to provide for three-dimensional image visualization and analysis (Fig. 2). The volumetric image stacks are stored electronically for analysis and archiving.
Figure 2. Array tomographic images of layer 5 neuropil, barrel cortex of YFP-H Thy-1 transgenic mouse (Feng et al. 2000). Yellow fluorescent protein (YFP) expression in a subset of pyramidal cells (green), Synapsin 1 immunostaining (white), PSD95 (red), DAPI staining of nuclear DNA (blue). (A) Four-color fluorescence image of a single, ultrathin section (200 nm). (B) Volume rendering of a stack of 30 sections after computational alignment as described in this chapter.

(Step 8). Although array tomography procedures are at present relatively complex and demanding in comparison to many other imaging methods, each of the steps lends itself potentially to automated and highly parallel implementations, and for many applications the advantages outlined below can easily justify this extra effort.

Resolution
The volumetric resolution of fluorescence array tomography compares very favorably with the best optical sectioning microscopy methods. The axial resolution limit for array tomography is simply the physical section thickness (typically 70 nm). For a confocal microscope, the z-axis resolution is limited by diffraction to ~700 nm. The confocal’s limiting z-axis resolution is usually worsened, however, by spherical aberration when a high-numerical-aperture (high-NA) objective is focused more deeply than a few micrometers into any tissue specimen. Array tomography physical sectioning thus improves on ideal confocal optical sectioning by at least an order of magnitude. Spherical aberrations also adversely impact the lateral resolution of confocal microscopes as they are focused into a tissue depth. Array tomography avoids this problem, because the high-NA objective is always used at its design condition (immediate contact between specimen and coverslip), with no chance of focus depth aberration. The degradation of lateral resolution that occurs at focus depths of just a few micrometers can easily exceed a factor of 2 (see http://www.microscopy.fsu.edu/), so a very conservative approximation would imply that array tomography using ordinary high-NA, diffraction-limited optics would improve volumetric resolution (the product of improvements in x-, y-, and z-axes) by a factor of 40 (= 2 x 2 x 10). The improved volumetric resolution realized by array tomography can be very significant. For instance, individual synapses in situ within mammalian cortex generally cannot be resolved optically from their nearest neighbors by confocal microscopy but can be resolved quite reliably by array tomography (Micheva and Smith 2007).

Depth Invariance
The major limitation to quantitative interpretation of whole-mount tissue immunofluorescence images arises from reductions in both immunostaining and imaging efficiencies as focal plane depth increases. Diffusion and binding regimes typically limit the penetration of labeling antibodies to the
first few micrometers below the surface of a tissue, even after multiday incubations. Imaging efficiency likewise decreases with depth, as increasing spherical aberration and light scattering reduce signals profoundly with focal plane depths of just a few micrometers. These staining and imaging efficiency gradients make any quantitative comparison of specimen features at different depths with whole-mount (e.g., confocal) volume microscopy difficult and unreliable. Array tomography completely circumvents depth dependence issues, because each specimen volume element is stained identically owing to minimal section thickness, and imaged identically because every section is bonded directly to the coverslip surface.

Multiplexity

Traditional multicolor immunofluorescence techniques have provided compelling evidence for the localization of multiple molecular species at individual subcellular complexes. For example, because there is a very large number and a great diversity of distinct molecules at individual synapses, there is a pressing need for imaging techniques that can simultaneously discriminate many more than the three or four species that can be distinguished by standard multicolor immunofluorescence. Attempts have been made in the past to improve the multiplexity of immunofluorescence microscopy by repeated cycles of staining, imaging, and stain elution, but the results have been disappointing owing to the tendency of antibody elution treatments to destroy samples. In array tomography, specimens are stabilized by the embedding resin matrix and by tight attachment to the coverslip substrate. An example of multiplexed staining with array tomography is shown in Figure 3. We have shown as many as nine cycles of staining, imaging, and elution thus far (Micheva and Smith 2007). With four fluorescence “colors” per cycle, this would mean that 36 or more antigens could be probed in one specimen. We now routinely acquire four colors in each of three cycles for a total of 12 marker channels. Although 12–36 markers may still fall short of the degree of multiplexing needed to fully probe the many and diverse molecules composing a synapse, it is a substantial advance in comparison to traditional multicolor immunofluorescence methods.

FIGURE 3. Multiplexed staining for seven synaptic proteins in mouse cerebral cortex (layer 2/3, barrel cortex) using five cycles of staining and elution. This volume of 18 x 16 x 1.3 µm was reconstructed from 19 serial sections (70 nm each). Individual synapsin puncta 1, 2, and 3 colocalize with synaptophysin and VGlu1 and are closely apposed to PSD95 and thus appear to be excitatory synapses. Synapsin puncta 4–7 colocalize with synaptophysin, but do not have adjacent PSD95 puncta. Puncta 6 and 7 also colocalize with GAD and VGAT and thus have the characteristics of inhibitory synapses.
Volume Field of View

In principle, array tomography offers unique potential for the acquisition of high-resolution volume images that extend “seamlessly” over very large tissue volumes. The depth invariance of array tomography noted above eliminates any fundamental limit to imaging in depth, whereas the availability of excellent automated image mosaic acquisition, alignment, and stitching algorithms allows tiling over arbitrarily large array areas. Ultimate limits to the continuous arrayable volume will be imposed by difficulties in tissue fixation, processing, and embedding (owing to diffusion limitations) as thicker volumes are encountered, and by mechanical issues of ultramicrotome and diamond knife engineering as block face dimensions increase. Successful array tomography has already been shown for volumes with millimeter minimum dimensions, and it seems likely that volumes with minimum dimensions of several millimeters (e.g., an entire mouse brain) may be manageable eventually.

In practice, the size of seamless array tomography volumes is limited by the requirement that numerous steps in the fabrication, staining, and imaging of arrays be performed through many iterations without failure. At present, the most error-prone steps are those involved in array fabrication, whereas the most time-consuming are those involved in image acquisition. Ongoing engineering of array fabrication materials and processes will advance present limits to the error-free production of large arrays, whereas image acquisition times will be readily reducible by dividing large arrays across multiple substrates and imaging those subarrays on multiple microscopes.

The following protocols describe one simple implementation of immunofluorescence array tomography suitable for any laboratory with standard equipment and some expertise in basic fluorescence microscopy and ultrathin sectioning. In addition, algorithms designed to fully automate the acquisition of array images are described for the benefit of any laboratory having or planning to acquire the appropriate automated fluorescence microscopy hardware and software.
Protocol A

Rodent Brain Tissue Fixation and Embedding

Careful preparation of the tissue is essential for successful array tomography. These steps take time to complete and require some practice to perfect.

MATERIALS

CAUTION: See Appendix 6 for proper handling of materials marked with <!>. See the end of the chapter for recipes for reagents marked with <R>.

Reagents

Ethanol <!>, 4°C
Fixative <R>
Isoflurane <!> (VWR International)
LR White resin <!> (medium grade, SPI Supplies 2646 or Electron Microscopy Sciences 14381)
Mice
Wash buffer <R>, 4°C

Equipment

Capsule mold (Electron Microscopy Sciences 70160)
Dissection instruments: handling forceps, small scissors, bone rongeur, forceps #5, small spatula, scalpel
Gelatin capsules, size 00 (Electron Microscopy Sciences 70100)
Guillotine
Microscope, dissection
Microwave tissue processor system (PELCO with a ColdSpot set at 12°C; Ted Pella, Inc.) (optional)
Oven (set at 51°C–53°C)
Paintbrush, fine
Petri dishes, 35-mm
Scintillation vials, glass, 20-mL

EXPERIMENTAL METHOD

Dissecting and Fixing Tissue

1. Anesthetize the rodent with isoflurane.
2. Remove head using the guillotine.
3. In a hood, using the dissection tools quickly remove the brain and plunge it into a 35-mm Petri dish filled with fixative (room temperature). Remove the tissue region of interest.
4. Transfer tissue to a scintillation vial with fixative solution. Use ~1 mL of fixative per vial, or just enough to cover the tissue; excessive liquid volume will cause overheating in the microwave.
5. Microwave the tissue in the fixative using a cycle of 1 min on/1 min off/1 min on at 100–150 W. After this and each subsequent cycle feel the glass vial to check for overheating. If solutions are getting too warm (>37°C), decrease the amount of liquid added.

6. Microwave using a cycle of 20 sec on/20 sec off/20 sec on at 350–400 W. Repeat three times.

7. Leave the tissue at room temperature for ~1 h.

 If a microwave is unavailable, fix the samples at room temperature for up to 3 h or overnight at 4°C. Tissue can also be fixed by perfusion.

8. Prepare ethanol dilutions: 50%, 70%, 95%, and 100% in ultrapure H₂O. Keep at 4°C.

9. Wash the tissue in wash buffer (4°C) twice for 5 min each.

10. Transfer the tissue to a 100-mm Petri dish, cover with wash buffer, and under a dissecting microscope dissect the tissue into smaller pieces (<1 mm in at least one dimension).

11. Return the samples to scintillation vials and rinse them twice with wash buffer for 15 min each at 4°C.

12. Change to 50% ethanol (4°C) and microwave the samples for 30 sec at 350 W. Use just enough liquid to cover the tissue; excessive liquid volume will cause overheating.

 If a microwave processor is unavailable, Steps 12–20 can be performed for 5 min per step on the bench.

13. Change to 70% ethanol (4°C) and microwave the samples for 30 sec at 350 W.

Processing Samples that Contain Fluorescent Proteins

If processing samples with fluorescent proteins, then complete Steps 14–16. If samples do not contain fluorescent proteins, then skip Steps 14–16, and instead continue with Step 17.

14. Change one more time to 70% ethanol and microwave for 30 sec at 350 W.

15. Change to a mixture of 70% ethanol and LR White (1:3; if it turns cloudy add 1–2 extra drops of LR White) and microwave for 30 sec at 350 W.

Processing Samples that Do Not Contain Fluorescent Proteins

17. Change to 95% ethanol (4°C) and microwave for 30 sec at 350 W.

18. Change to 100% ethanol (4°C) and microwave for 30 sec at 350 W. Repeat once.

19. Change to 100% ethanol and LR White resin (1:1 mixture, 4°C) and microwave for 30 sec at 350 W.

Embedding Brain Tissue

20. Change to 100% LR White (4°C) for 30 sec at 350 W. Repeat two more times.

21. Change to fresh LR White (4°C) and leave either overnight at 4°C or 3 h at room temperature.

22. Using a fine paintbrush, place the tissue pieces at the bottom of gelatin capsules (paper labels can also be added inside the capsule) and fill to the rim with LR White.

 See Troubleshooting.

23. Close the capsules well and put in the capsule mold.

 Gelatin capsules are used because they exclude air that inhibits LR White polymerization. The little bubble of air that will remain at the top of the capsule will not interfere with the polymerization.

24. Put the mold with capsules in the oven set at 51°–53°C. Leave overnight (~18–24 h).
TROUBLESHOOTING

Problem (Step 22): It is difficult to orient the tissue.
Solution: If tissue orientation is important, it should be dissected in a shape that will make it naturally sink in the resin the desired way—for example, for mouse cerebral cortex, a 300-µm coronal slice can be cut and trimmed to a rectangle, ~1 x 2 mm, that includes all of the cortical layers. Alternately, if the tissue is elongated and has to be cut perpendicular to the long axis, the capsules can be positioned on the side, instead of standing up in the mold.
Production of Arrays

Once the tissue has been embedded, the arrays are prepared. This protocol requires familiarity with ultramicrotome sectioning for electron microscopy.

MATERIALS

CAUTION: See Appendix 6 for proper handling of materials marked with <!>. See the end of the chapter for recipes for reagents marked with <R>.

Reagents

Borax
Contact cement (DAP Weldwood)
Subbing solution <R>
Tissue, fixed and embedded as in Protocol A
Toluidine blue
Xylene <!>

Equipment

Coverslips (for routine staining: VWR International Micro Cover Glasses, 24 x 60-mm, No.1.5, 48393-252; for quantitative comparison between different arrays: Bioscience Tools High Precision Glass Coverslips CSHP-No1.5-24 x 60)
Diamond knife (Cryotrim 45; Diatome) (optional)
Diamond knife (Histo Jumbo; Diatome)
Eyelash tool
Marker
Razor blades
Paintbrush, fine
Slide warmer set at 60°C
Staining rack (Pacific Southwest Lab Equipment, Inc. 37-4470 and 4456)
Syringe
Transfer pipettes, extra fine-tip polyethylene (Fisher Scientific 13-711-31)
Ultramicrotome (e.g., Leica EM UC6)

EXPERIMENTAL METHOD

1. Prepare subbed coverslips. They can be prepared in advance and stored in coverslip boxes until needed.
 i. Put clean coverslips into the staining rack.
 ii. Immerse the rack in the subbing solution and remove bubbles formed at the surface of the coverslips using a transfer pipette.
iii. After 30–60 sec, lift out and drain off excess liquid. Leave the coverslips in a dust-free place until they are dry.

2. Using a razor blade, trim the block around the tissue. A blockface ~2 mm wide and 0.5–1 mm high works best.

3. Using a glass knife or an old diamond knife cut semithin sections until you reach the tissue. Mount a couple of the semithin sections on a glass slide and stain with 1% toluidine blue in 0.5% borax. View the stained sections under a microscope to determine whether they contain the region of interest and decide how to trim the block.

4. Trim the block again, to ensure that the blockface is not too big and the leading and trailing edges of the blockface are parallel. The Cryotrim 45 diamond knife works well for this purpose.

5. Using a paintbrush, apply contact cement diluted with xylene (1:2) to the leading and trailing sides of the block pyramid. Blot the extra glue using a tissue.

6. Insert a subbed coverslip into the knife boat of the Histo Jumbo diamond knife. You may need to push it down and wet it using the eyelash tool. Make sure that the knife angle is set at 0°.

7. Carefully align the block face with the edge of the diamond knife. If the block starts cutting at an angle, the leading and trailing edge of the block face will no longer be parallel.

8. Start cutting ribbons of serial sections (70–200 nm) with the diamond knife. In general, thinner sections stick better to the glass.

See Troubleshooting.

9. When the desired length of the ribbon is achieved, carefully detach it from the edge of the knife by running an eyelash along the outer edge of the knife. Then use the eyelash to gently push the ribbon toward the coverslip, so that the edge of the ribbon touches the coverslip at the interface of the glass and the water. The edge of the ribbon will stick to the glass.

10. Using a syringe, slowly lower the water level in the knife boat until the entire ribbon sticks to the glass.

11. Remove the coverslip from the water and label it on one edge. Also, mark the position of the ribbon by circling it with a marker on the backside of the coverslip. This allows you to keep track of the samples and provides a way to tell which side of the coverslip the ribbon is mounted on (without a label, after the ribbon dries, it is not possible to tell which side it is on).

12. Let the ribbon dry at room temperature and place the coverslip on the slide warmer (~60°C) for 30 min. The slides can be stored at room temperature for at least 6 mo.

TROUBLESHOOTING

Problem (Step 8): The ribbons curve.
Solution: Sometimes, even when the leading and trailing edges of the blockface are parallel, the ribbons are curved. This can happen when there is more resin around the tissue on one side of the block than the other. As the section comes in contact with water it expands, however, the resin and tissue expand to different degrees, causing curving of the ribbon. Thus, make sure that the extra resin is trimmed on either side of the block.

Problem (Step 8): The ribbons break.
Solution: Trim the block using a very sharp razor blade or, even better, the Cryotrim diamond knife. Make sure that the blockface is at least twice as wide as it is high. Apply glue again and take care to align the block so the edge of the blockface is parallel to the knife edge.
Immunostaining and Antibody Elution

The tissue arrays are prepared for imaging by binding primary antibodies against specific cellular targets followed by secondary fluorescent antibodies. Alternatively, fluorescent proteins can be used that have been introduced into the tissue before dissection.

MATERIALS

CAUTION: See Appendix 6 for proper handling of materials marked with <!>. See the end of the chapter for recipes for reagents marked with <R>.

Reagents

Alternative antibody dilution solution with normal goat serum (NGS) <R>
Alternative blocking solution with NGS <R>
Blocking solution with bovine serum albumin (BSA) <R>
Elution solution <R>
Glycine
Mounting medium: SlowFade Gold antifade reagent with DAPI <!> (Invitrogen S36939) or without DAPI (Invitrogen S36937)
Primary antibodies, see Table 1
Secondary antibodies: for example, the appropriate species of Alexa Fluor 488, 594, and 647, IgG (H+L), highly cross-adsorbed (Invitrogen)
Tissue sectioned as in Protocol B
Tris buffered saline tablets (Sigma-Aldrich T5030)

Equipment

Microcentrifuge
Microscope slides (precleaned Gold Seal Rite-On micro slides; Fisher Scientific 12-518-103)
PAP pen (ImmEdge Pen, Vector Laboratories H-4000)
Petri dishes, 100-mm diameter

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Source</th>
<th>Supplier</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synapsin I</td>
<td>Rabbit</td>
<td>Millipore AB1543P</td>
<td>1:100</td>
</tr>
<tr>
<td>PSD95</td>
<td>Mouse</td>
<td>NeuroMabs 75-028</td>
<td>1:100</td>
</tr>
<tr>
<td>VGluT1</td>
<td>Guinea pig</td>
<td>Millipore AB5905</td>
<td>1:1000</td>
</tr>
<tr>
<td>GAD</td>
<td>Rabbit</td>
<td>Millipore AB1511</td>
<td>1:300</td>
</tr>
<tr>
<td>Gephyrin</td>
<td>Mouse</td>
<td>BD Biosciences 612632</td>
<td>1:100</td>
</tr>
<tr>
<td>Tubulin</td>
<td>Rabbit</td>
<td>Abcam ab18251</td>
<td>1:200</td>
</tr>
<tr>
<td>Tubulin</td>
<td>Mouse</td>
<td>Sigma-Aldrich T6793</td>
<td>1:200</td>
</tr>
<tr>
<td>Neurofilament 200</td>
<td>Rabbit</td>
<td>Sigma-Aldrich N4142</td>
<td>1:100</td>
</tr>
</tbody>
</table>
Slide warmer set at 60°C
Transfer pipettes, extra fine-tip polyethylene (Fisher Scientific 13-711-31)

EXPERIMENTAL METHOD

1. Encircle the ribbon of sectioned tissue with a PAP pen.
2. Place the coverslip into a humidified 100-mm Petri dish and treat the sections with 50 mM glycine in Tris buffer for 5 min.
3. Apply blocking solution with BSA for 5 min.
 If there is a problem with high background staining, see the alternate blocking and staining protocol beginning with Step 21.
4. Dilute the primary antibodies in blocking solution with BSA. Approximately 150 µL of solution will suffice to cover a 30-mm-long ribbon.
5. Centrifuge the antibody solution at 13,000 revolutions per minute (rpm) for 2 min before applying it to the sections.
6. Incubate the sections in primary antibodies either overnight at 4°C or for 2 h at room temperature.
 Primary antibodies are diluted to 10 µg/mL, although the best concentration will need to be determined for each antibody solution.
7. Rinse the sections three to four times with Tris buffer for a total of ~20 min. Wash the sections using a manual “perfusion” method, simultaneously adding Tris buffer on one end and removing it from another with plastic transfer pipettes.
8. Dilute the appropriate secondary antibodies in blocking solution with BSA (1:150 for Alexa secondaries).
9. Centrifuge secondary antibody solution at 13,000 rpm for 2 min.
10. Incubate the sections in secondary antibodies for 30 min at room temperature in the dark.
11. Rinse the sections three to four times with Tris buffer for ~5 min each.
12. Wash the coverslip thoroughly with filtered ultrapure H2O to remove any dust or debris, leaving some H2O on the sections so that they do not dry out.
13. Mount the sections on a clean, dust-free microscope slide with SlowFade Gold Antifade containing DAPI.
14. Image the sections as soon as possible after immunostaining, or at least the same day. If you are planning to restain the sections with additional antibodies, elute the antibodies (Steps 15–19) as soon as possible after imaging.

Elute Antibodies Before Restaining

15. Add filtered ultrapure H2O around the edge of the coverslip to help slide it off the microscope slide.
 Wash the coverslip gently with filtered ultrapure H2O to rinse off the mounting medium.
16. Apply elution solution for 20 min.
17. Gently rinse the coverslips twice with Tris, allowing them to sit for 10 min with each rinse.
18. Rinse the coverslips with filtered ultrapure H2O and let them air dry completely.
19. Bake the coverslip on a slide warmer set to 60°C for 30 min.
Staining the Sections Multiple Times

20. Restain using the Steps 2–13 above or store array at room temperature until needed.
 See Troubleshooting.

Alternative Staining Method to Reduce Background

21. Proceed through Steps 1 and 2 of the staining protocol above.
22. Incubate the sections for 30 min with alternative blocking solution with NGS.
 If secondary antibodies are made in donkey, use normal donkey serum; if secondary antibodies
 are made in horse, use normal horse serum, etc. This protocol can only be used if all of the sec-
 ondary antibodies are made in the same animal.
23. Dilute the primary and secondary antibodies in alternative antibody dilution solution with
 NGS.
24. Follow the rest of the staining protocol above, using the solutions with NGS.

TROUBLESHOOTING

Problem (Step 20): There is incomplete elution of antibodies.
Solution: To check for incomplete elution, which could interfere with subsequent antibody staining,
perform the following control experiment. Stain with the antibody of interest and image a
region that you can relocate later. Elute and apply the secondary antibody again. Image the same
region as before, using the same exposure time; this will give an estimate of how much primary
antibody was left after the elution. Increase the exposure time to determine if longer exposure
times reveal the initial pattern of antibody staining. If the first antibody was not eluted suffi-
ciently, try longer elution times. Some antibodies elute poorly (e.g., rabbit synapsin or tubulin)
and, if followed by a weaker antibody, may still be detectable after the elution. In such cases,
begin the experiment with the weaker antibodies.
Protocol D

Imaging Stained Arrays

Tissue arrays are imaged using a conventional wide-field fluorescence microscopy. Images can be captured manually or, with the appropriate software and hardware, the process can be automated.

MATERIALS

Reagents

Immunostained brain sections prepared as in Protocol C

Equipment

Digital camera (Axiocam HR, Carl Zeiss)
Fluorescence filters sets (all from Semrock) YFP, 2427A; GFP, 3035B; CFP, 2432A; Texas Red, 4040B; DAPI, 1160A; FITC, 3540B; and Cy5, 4040A
Illuminator series 120 (X-Cite)
Objective (Zeiss Immersol 514 F Fluorescence Immersion Oil)
Piezo Automated Stage (Zeiss)
10× Plan-Apochomat 0.45 NA
63× Plan-Apochromat 1.4 NA oil objective
Software (e.g., Zeiss Axiovision with Interactive Measurement Module, Automeasure Plus Module and Array Tomography Toolbar; the toolbar can be downloaded from http://www.stanford.edu/~bbusse/work/downloads.html)
Upright microscope (Zeiss Axio Imager.Z1)

EXPERIMENTAL METHOD

Manual Image Acquisition

1. Focus on your sample using the 10× objective. Find the ribbon by focusing on the DAPI label or another bright label that is not prone to bleaching. Once you have found the right general area of the sample, switch to the 63× objective.
 See Troubleshooting.

2. Find the exact area of the sample that you want to image. Choose a landmark that you can use to find the same spot in the next section. A useful landmark should not change dramatically from one section to the next (e.g., a DAPI-stained nucleus or blood vessel). Because the sections are 70–200 nm thick we can often follow the same nucleus through the entire length of a long array. Line up your landmark with a crosshair in the middle of the field.

3. Set the correct exposure for each of your fluorescence channels.

4. Beginning with the first section, collect an image of your area of interest.

5. Manually, move to the same area of the next section. The glue on the edge of each section is autofluorescent, so you can tell when you have moved to the next section. Align your landmark carefully in each section to assure that your image alignment will run smoothly.
 See Troubleshooting.
6. Continue to the end of the ribbon, collecting an image from each section. Align your stack of images using Protocol E.

Automated Image Acquisition

Although we have developed our automated tools to work with Zeiss Axiovision software, any microscopy software suite (such as Micro-Manager) controlling an automated stage should be adaptable to this approach. Some steps may be altered or eliminated, depending on your framework and implementation.

7. With the 10× objective, find the ribbon by focusing on the DAPI label or another bright label that is not prone to bleaching.

 See **Troubleshooting**.

8. Acquire a mosaic image of the entire ribbon with the MosaicX Axiovision module, using a bright label that does not vary much between sections, such as DAPI.

9. Find the top left and bottom right corners of the ribbon and use them to define the limits of the mosaic in the Mosaic Setup dialog.

10. Set three to four focus positions along the length of the ribbon and enable focus correction.

11. Collect the mosaic image. Convert the mosaic to a single image with the “Convert Tile Images” dialog, setting the Zoom factor to 1 so that the resulting image is the same size.

 See **Troubleshooting**.

12. Choose a point of interest to be imaged in the ribbon. Place a marker on that point via Measure → Marker. Place another marker at the same spot in the next consecutive section. Create a table of the x and y coordinates of the markers, “DataTable,” via Measure → Create Table, with the “list” option. This allows Axiovision’s Visual Basic scripts to read the marker locations.

 See **Troubleshooting**.

13. With the large, stitched image selected, call “PrepImage” and “MarkLoop” from the Array Tomography toolbar.

14. The preceding step will create a file (.csv) with a list of the coordinates for the same position in each section, which will be automatically saved in the same folder as the mosaic and with the same name as the stitched image. To load the position list, go to Microscope → Mark and Find, click the “New” icon, and then the “Import Position list” button. In the Mark and Find dialog, switch to the “Positions” tab which will let you review or edit the calculated positions by double-clicking on any position.

15. Collect one field of view at each point via Multidimensional Acquisition with the “position list” checkbox set. We recommend using a bright label that is present throughout the field as the first channel, setting it to autofocus at each position. Review your images at the end to make sure they are all in focus.

 See **Troubleshooting**.

TROUBLESHOOTING

Problem (Steps 1 and 7): Sections cannot be found under the microscope.

Solution: Use DAPI in the mounting medium—it will stain the nuclei brightly and make it easy to find the sections with the 10× objective. Make sure the coverslip has been mounted with the sections on the same side as the mounting medium and that there are no bubbles in the immersion oil.
Problem (Steps 5 and 15): Sections are wrinkled.
Solution: Section wrinkling can occur at several steps in the procedure. First, it can occur during array preparation if the coverslip is put on the slide warmer while the ribbon is still wet. Make sure that the sections are dry before putting them on the slide warmer. It can also occur if the blockface is too big (>1 x 2 mm) or sections are too thick (>200 nm). Second, wrinkles can be caused by improper subbing of the coverslips. The gelatin must be 300 Bloom (measure of stickiness, higher number indicates stickier) and should not be heated above 60°C during solution preparation. Third, sections can wrinkle if the ribbon is stored with the mounting solution for >2 d. Finally, wrinkling can occur after antibody elution, especially with sections 200 nm thick. Make sure that the solutions are applied gently during the elution and the array is completely dry before putting it on the slide warmer.

Problem (Steps 5 and 15): There is no staining or fluorescent signal.
Solution: Use a high-power, high-NA objective—ideally a 63x oil objective. Only immunofluorescence with antibodies against abundant antigens (e.g., tubulin, neurofilament) will be visible with a low-power objective. Also, check if there are two coverslips stuck to each other; this will make it impossible to focus at higher magnification.

Problem (Steps 5 and 15): Punctate staining is seen with a seemingly random distribution.
Solution: Immunostaining with thin array sections (<200 nm) looks different from staining on thicker cryosections or vibratome sections. Because a very thin layer of tissue is probed, many stains that appear continuous on thicker sections will appear punctate with array tomography. A 3D reconstruction of a short ribbon (10–20 sections) can be helpful for comparison. You may also need to test antibody performance. First, compare the antibody staining pattern to that of different antibodies against the same antigen or a different antigen with a similar distribution. For example, a presynaptic marker should be adjacent to a postsynaptic marker. Other common controls for immunostaining can be used, such as omitting primary antibodies, staining a tissue that does not contain the antigen, etc. Second, specific controls for array tomography include comparison of the antibody staining patterns from adjacent sections or from consecutive stains (i.e., stain → image → elute → stain with the same antibody → image the same region → compare). Not all antibodies that work well for other applications will work for array tomography.

Problem (Steps 5 and 15): There is high background fluorescence.
Solution: Background fluorescence can have many causes. Often, there is high autofluorescence when using the low-power (but not high-power) objectives. If the autofluorescence levels are high with the 63x objective, try the following. First, check whether the immersion oil is designed to be used with fluorescence. Second, labeling marks on the back of the coverslip can dissolve in the immersion oil causing autofluorescence—wipe labels off with ethanol before imaging. Third, use high-quality fluorescence filter sets. Fourth, try a longer fluorescence quenching step (glycine treatment in Protocol C, Step 2), the alternative staining method (Protocol C, Step 21), or introduce an additional quenching step with 1% sodium borohydride in Tris buffer for 5 min.

Problem (Steps 5 and 15): Green fluorescent protein (GFP)/YFP fluorescence is lost.
Solution: First, confirm that the tissue was dehydrated only to 70% ethanol (Protocol A, Step 14). Second, make sure you are using a high-power, high-NA objective. To check for GFP fluorescence use a short array with ultrathin sections (<200 nm). Let it sit for 5–10 min or more with Tris-glycine (50 mM glycine in Tris), mount over a glass slide and look with the 63x objective. GFP can bleach very fast, so work quickly to find the region with GFP fluorescence. For acquiring images, select the region of interest with another stain (e.g., Alexa 594) and focus. Do not use the DAPI stain for this purpose, because it can cause DAPI to bleed into the GFP channel. In cases of weak GFP fluorescence, GFP antibodies may help identify GFP-positive cell bodies and large processes, but are generally not useful for thinner processes. GFP antibodies for array
Chapter 45

Array Tomography

Tomography include Roche 11814460001 (mouse), MBL 70 (rabbit), Invitrogen A11122 (rabbit), NeuroMabs 75-131 (mouse), GeneTex GTX13970 (chicken). All of these antibodies should be used at 1:100 dilution.

Problem (Step 11): The “Convert Tile Images” step keeps downsampling the stitched image.
Solution: In the Tools → Options → Acquisition menu, change the Mx. MosaicX image size to the maximum allowed: 1000000000 pixel.

Problem (Step 12): The microscopy software is not designed for array tomography.
Solution: We have developed an algorithm that automates position finding in the arrays by using simple extrapolation to estimate the neighborhood of an unknown point and then refining the estimate with an autocorrelation search. Given two known points Pn and Pn−1, we find the next point Pn+1 such that Pn+1 = Pn + (Pn − [Pn−1]) (Fig. 4). This does not take into account ribbon curvature or changes in section width, but gives a rough approximation of the unknown point’s locale. Pn+1 becomes the center of an autocorrelation search to find the point’s true position. The size of the search varies with the width of the sections; larger sections will have larger warping and curvature effects, and any miscalculation in the estimate of Pn+1 will be magnified.

To conduct the search, the algorithm compares the area centered at Pn+1 with a Kalman-filtered image of recently processed points. Although our fiducial labels (DAPI and tubulin immunostaining) have minor variations from section to section, it does not disrupt the accuracy of the correlation search. To make the Kalman-filtered image at each iteration, use the area around the current Pn, newSample, to update the image using the following pseudocode: image = 0.3 × image + 0.7 × newSample. The purpose of using the Kalman filter, when newSample alone would do, is to add a measure of robustness to the algorithm. If the ribbon is damaged or has aberrant staining on a single section, using newSample alone may result in the algorithm going off course. With a running average of previous iterations to compare with, a defect in a single section has a good chance of being ignored. This process continues until one end of the ribbon is reached, then starts in the other direction.

FIGURE 4. (Top) A fragment of an array tomography ribbon stained with DAPI. (Bottom) A closer view of two sections in the ribbon showing a single iteration of the position-finding algorithm. An established field (red x) is used to maintain a reference patch (red square) for a correlation-based search (green square) to find the next point (green circle).
We developed an implementation of this algorithm in Visual Basic script for Zeiss Axiovision, available from http://www.stanford.edu/~bbusse/work/downloads.html, and would welcome any ports to other microscopy software.

Problem (Step 15): Autofocus does not work using Axiovision.

Solution: The autofocus does not work every time. Typically, ~5% of the images collected with autofocus may be out of focus. In that case, you can move to the positions on the ribbon with bad focus, focus by hand, and collect individual images. Replace the out-of-focus images with the newly focused ones in the stack before to alignment. If 10% or more of the images are out of focus, you can try using the autofocus with a different channel. Pick a channel with antibody staining that is bright, and present throughout the field of view. Using a channel with dim or sparse immunostaining will not work well.

Problem (Step 15): Autofocus is grayed out.

Solution: In the Tools → Options → Acquisition menu, check the box marked either “Use calibration-free Autofocus” or “Enable new Autofocus.”
Semiautomated Image Alignment

Successful array tomography requires that the captured images be properly stacked and aligned. Software to achieve these ends is freely available.

MATERIALS

Software

Fiji can be obtained at http://pacific.mpi-cbg.de/wiki/index.php/Main_Page
MultiStackReg is available at http://www.stanford.edu/~bbusse/work/downloads.html

EXPERIMENTAL METHOD

1. Load your images into Fiji. If using Axiovision, Fiji’s Bio-Formats Importer plugin can read .zvi files directly.
2. Pick a channel that is relatively invariant from one section to the next (e.g., DAPI or tubulin), and select a slice near the middle of the ribbon.
3. Align the sections of that channel using “affine” in MultiStackReg (Fiji), but do not save over the misaligned stack. Save the resulting transformation matrix. This is the intrasession matrix. See Troubleshooting.
4. Using MultiStackReg, apply that matrix to the other channels of the same imaging session.
5. For each subsequent imaging session, choose the same channel. Align the new (misaligned) channel to the old (misaligned) channel, saving the matrix. This is the intersession matrix.
6. For each channel in that imaging session, first apply the intersession matrix from Step 5 and then the intrasession matrix from Step 3.
7. Repeat until all imaging sessions have been registered.

TROUBLESHOOTING

Problem (Step 3): The alignment steps are not working properly.
Solution: Detailed instructions with graphical illustration, compiled by Andrew Olson, are available at http://nisms.stanford.edu/UsingOurServices/Training.html. If an “affine” transformation does not align the images well, try either the “rigid body” then “affine” or try “rigid body” alone. For each registration step, save the transformation matrix and apply it to the other channels in sequence.

MultiStackReg is an extension of the StackReg ImageJ plugin, which is dependent on TurboReg (Thévenaz et al. 1998). TurboReg aligns a single pair of images using a pyramid registration scheme. StackReg aligns an entire stack by calling TurboReg on each pair of consecutive slices in the stack, propagating the alignment to later slices. The two principle changes added by
MultiStackReg are the ability (1) to load and save transformation matrices and (2) to align one stack to another by registering each pair of corresponding sections independently. MultiStackReg can process TurboReg alignment files in the same manner as the files it generates for itself, so if your alignment is failing owing to a single section, it is possible to manually align that section in TurboReg, apply that transform to a copy of the stack, and splice the two together.
CONCLUSION AND FUTURE DIRECTIONS

One important application of array tomography in the field of neuroscience is the analysis of synapse populations. With this method it is possible to resolve individual synapses in situ within brain tissue specimens. Because 10 or more antibodies can be used on an individual sample, the molecular signature of each synapse can be defined with unprecedented detail. The throughput of the technique is inherently high, approaching the imaging of one million synapses per hour. Compared with 3D reconstruction at the electron microscopic level, array tomography can image much larger volumes and provide information about the presence of a much larger number of molecules, but cannot presently provide the fine ultrastructure of electron microscopy. On the other hand, the amount of effort involved in array tomography may not be warranted for all studies. If it is not considered critical to resolve individual synapses, immunostaining of vibratome sections or cryosections and confocal microscopy imaging may be sufficient.

Currently, we are focused on developing array tomography in three directions. First, we are refining current staining and imaging approaches to image larger and larger tissue volumes with more antibodies. Second, we are combining light and electron microscopic imaging to visualize both immunofluorescence and ultrastructure on the same tissue sections. Finally, we are applying advanced computational methods for data analysis, in particular with the goal to both count and classify millions of synapses on a routine basis.

RECIPE

CAUTION: See Appendix 6 for proper handling of materials marked with <!>.
Recipes for reagents marked with <R> are included in this list.

Alternative Antibody Dilution Solution with NGS (1 mL)

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Quantity</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tween (1%) (make the stock solution using Tween-20 [Electron Microscopy Sciences 25564])</td>
<td>100 µL</td>
<td>0.1%</td>
</tr>
<tr>
<td>NGS (Invitrogen PCN5000)</td>
<td>30 µL</td>
<td>3%</td>
</tr>
<tr>
<td>Tris buffer</td>
<td>870 µL</td>
<td></td>
</tr>
</tbody>
</table>

Prepare on the same day it is used. NGS can be kept frozen in aliquots for several months.

Alternative Blocking Solution with NGS (1 mL)

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Quantity</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tween (1%) (make the stock solution using Tween-20 [Electron Microscopy Sciences 25564])</td>
<td>100 µL</td>
<td>0.1%</td>
</tr>
<tr>
<td>NGS (Invitrogen PCN5000)</td>
<td>100 µL</td>
<td>10%</td>
</tr>
<tr>
<td>Tris buffer</td>
<td>800 µL</td>
<td></td>
</tr>
</tbody>
</table>

Prepare on the same day it is used. NGS can be kept frozen in aliquots for several months.
Blocking Solution with BSA (1 mL)

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Quantity</th>
<th>Final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tween (1%) (make the stock solution using Tween-20</td>
<td>50 µL</td>
<td>0.05%</td>
</tr>
<tr>
<td>[Electron Microscopy Sciences 25564])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSA (10%) (AURION BSA C [acetylated BSA], Electron Microscopy Sciences 25557)</td>
<td>10 µL</td>
<td>0.1%</td>
</tr>
<tr>
<td>Tris buffer</td>
<td>940 µL</td>
<td></td>
</tr>
</tbody>
</table>

Prepare the same day. The 1% Tween stock (10 µL Tween in 1 mL of H₂O) and the 10% BSA stock can be kept at 4°C for several months.

Elution Solution (10 mL)

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Quantity</th>
<th>Final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaOH <!>, 10 N</td>
<td>200 µL</td>
<td>0.2 N</td>
</tr>
<tr>
<td>SDS <!> (20%)</td>
<td>10 µL</td>
<td>0.02%</td>
</tr>
<tr>
<td>Distilled H₂O</td>
<td>10 mL</td>
<td></td>
</tr>
</tbody>
</table>

Can be prepared in advance and stored at room temperature for several months.

Fixative (4 mL)

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Quantity</th>
<th>Final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paraformaldehyde <!> (8%, EM grade; Electron Microscopy Sciences 157-8)</td>
<td>2 mL</td>
<td>4%</td>
</tr>
<tr>
<td>PBS, 0.02 M (use PBS powder, pH 7.4 [Sigma-Aldrich P3813])</td>
<td>2 mL</td>
<td>0.01 M</td>
</tr>
<tr>
<td>Sucrose</td>
<td>0.1 gm</td>
<td>2.5%</td>
</tr>
</tbody>
</table>

Prepare the same day as it will be used.

Subbing Solution (300 mL)

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Quantity</th>
<th>Final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gelatin from porcine skin, 300 Bloom</td>
<td>1.5 g</td>
<td>0.5%</td>
</tr>
<tr>
<td>(Sigma-Aldrich G1890)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium potassium sulfate (Sigma-Aldrich 243361)</td>
<td>0.15 g</td>
<td>0.05%</td>
</tr>
<tr>
<td>Distilled H₂O</td>
<td>300 mL</td>
<td></td>
</tr>
</tbody>
</table>

Prepare the same day. Dissolve the gelatin in 290 mL of distilled H₂O by heating to <60°C. Dissolve 0.15 gm of chromium potassium sulfate in 10 mL of H₂O. When the gelatin solution cools down to ~37°C, combine the two solutions, filter, and pour into the staining tank. Use fresh.
Wash Buffer (50 mL)

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Quantity</th>
<th>Final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycine</td>
<td>187.5 mg</td>
<td>50 mM</td>
</tr>
<tr>
<td>Sucrose</td>
<td>1.75 g</td>
<td>3.5%</td>
</tr>
<tr>
<td>PBS, 0.02 M</td>
<td>25 mL</td>
<td>0.01 M</td>
</tr>
<tr>
<td>Distilled H₂O</td>
<td>25 mL</td>
<td></td>
</tr>
</tbody>
</table>

Can be prepared in advance and stored at 4°C for up to 1 mo; discard if it appears cloudy.

ACKNOWLEDGMENTS

We thank JoAnn Buchanan and Nafisa Ghori for their help in refining the methods. This work was supported by grants from McKnight Endowment Fund for the Neurosciences, the National Institutes of Health (NS 063210), The Gatsby Charitable Foundation, and the Howard Hughes Medical Institute.

REFERENCES

