Contents

Preface, xv

SECTION 1 DETECTION AND APPROACHES TO LIVE CELL IMAGING, 1

1 Fluorescent Protein Tracking and Detection, 3
 M.A. Rizzo, M.W. Davidson, and D.W. Piston

2 Constructing and Expressing Fluorescent Protein Fusions, 35
 D.L. Spector and R.D. Goldman

3 Micropatterning Cell–Substrate Adhesions Using Linear Polyacrylamide
 as the Blocking Agent, 43
 W.-h. Guo and Y.-l. Wang

4 CCD Cameras for Fluorescence Imaging of Living Cells, 53
 W.C. Salmon and J.C. Waters

5 Fluorescence Perturbation Techniques to Study Mobility and Molecular
 Dynamics of Proteins in Live Cells: FRAP, Photoactivation, Photoconversion,
 and FLIP, 67
 A. Bancaud, S. Huet, G. Rabut, and J. Ellenberg

6 Imaging Protein States in Cells, 95
 H.E. Grecco and P.I.H. Bastiaens

7 A Versatile, Multicolor Total Internal Reflection Fluorescence and
 Spinning-Disk Confocal Microscope System for High-Resolution
 Live Cell Imaging, 119
 W.D. Shin, R.S. Fischer, P. Kanchanawong, Y. Kim, J. Lim, K.A. Myers, Y. Nishimura,
 S.V. Plotnikov, I. Thievessen, D. Yarar, B. Sabass, and C.M. Waterman

8 Confocal Microscopy, Deconvolution, and Structured Illumination
 Methods, 139
 J.M. Murray

9 Atomic-Force Microscopy for Biological Imaging and Mechanical Testing
 across Length Scales, 183
 M. Plodinec, M. Loparic, and U. Aebi
CONTENTS

10 OMX: A New Platform for Multimodal, Multichannel Wide-Field Imaging, 203
 I.M. Dobbie, E. King, R.M. Parton, P.M. Carlton, J.W. Sedat, J.R. Swedlow, and I. Davis

11 Digital Scanned Laser Light Sheet Fluorescence Microscopy, 215
 P.J. Keller and E.H.K. Stelzer

12 First Steps for Fluorescence Correlation Spectroscopy of Living Cells, 229
 M. Kinjo, H. Sakata, and S. Mikuni

13 Tracking and Quantitative Analysis of Dynamic Movements of Cells and Particles, 239
 K. Rohr, W.J. Godinez, N. Harder, S. Wörz, J. Mattes, W. Tvaruskó, and R. Eils

14 Imaging Techniques for Measuring the Materials Properties of Cells, 257
 K.E. Kasza, D. Vader, S. Köster, N. Wang, and D.A. Weitz

15 Computational Image Analysis of Cellular Dynamics: A Case Study Based on Particle Tracking, 271
 K. Jaqaman and G. Danuser

16 Software Tools, Data Structures, and Interfaces for Microscope Imaging, 283
 N. Stuurman and J.R. Swedlow

17 High-Throughput Microscopy Using Live Mammalian Cells, 297
 S. Terjung, T. Walter, A. Seitz, B. Neumann, R. Pepperkok, and J. Ellenberg

SECTION 2 = IMAGING OF LIVE CELLS AND ORGANISMS, 315

18 In Vivo Imaging of Mammalian Cells, 317
 J.R. Swedlow, I.M. Porter, M. Posch, and S. Swift

19 Live Cell Imaging of Yeast, 333

20 Live Imaging of Caenorhabditis elegans, 351
 B. Podbilewicz and Y. Gruenbaum

21 Live Cell Imaging of Plants, 371
 Y. Fang and D.L. Spector

22 Pushing the Limits of Live Cell Imaging in Drosophila, 387
 R.M. Parton, A.M. Vallés, I.M. Dobbie, and I. Davis

23 Dynamic, Long-Term, In Vivo Imaging of Tumor–Stroma Interactions in Mouse Models of Breast Cancer Using Spinning-Disk Confocal Microscopy, 419
 A.J. Ewald, Z. Werb, and M. Egeblad

24 High-Resolution Multiphoton Imaging of Tumors In Vivo, 441
 J. Wyckoff, B. Gligorijevic, D. Entenberg, J. Segall, and J. Condeelis
25 Correlated Live Cell Light and Electron Microscopy Using Tetracysteine Tags and Biarsenicals, 463
G.M. Gaietta, T.J. Deerinck, and M.H. Ellisman

26 Intravital Microscopy of Normal and Diseased Tissues in the Mouse, 475
R.K. Jain, L.L. Munn, and D. Fukumura

27 Imaging Lipids in Living Cells, 523
C. Schultz, A.B. Neef, T.W. Gadella, Jr., and J. Goedhart

28 Development of Mammalian Cell Lines with lac Operator–Tagged Chromosomes, 541
Y.G. Strukov, M. Plutz, and A.S. Belmont

29 Imaging Gene Expression in Living Cells, 565
S.M. Janicki and D.L. Spector

30 Studying Mitosis in Cultured Mammalian Cells, 571
P. Wadsworth

31 Imaging Intermediate Filament Proteins in Living Cells, 583
E.R. Kuczmarski, T. Shimi, and R.D. Goldman

32 Methods for Expressing and Analyzing GFP-Tubulin and GFP-Microtubule-Associated Proteins, 605
H.V. Goodson, J.S. Dzurisin, and P. Wadsworth

33 Imaging of Membrane Systems and Membrane Traffic in Living Cells, 623
E.L. Snapp and P. Lajoie

34 Imaging Live Cells under Mechanical Stress, 641
B.P. Helmke and P.F. Davies

35 Imaging Single Molecules Using Total Internal Reflection Fluorescence Microscopy, 659
S.L. Reck-Peterson, N.D. Derr, and N. Stuurman

36 Cellular Imaging Using Total Internal Reflection Fluorescence Microscopy, 675
D. Toomre

37 Visualization and Quantification of Single RNA Molecules in Living Cells, 697
Y. Shav-Tal, S.M. Shenoy, and R.H. Singer

Appendix: Cautions, 713

Index, 721
OMX: A New Platform for Multimodal, Multichannel Wide-Field Imaging

Ian M. Dobbie,1,4 Emma King,2,4 Richard M. Parton,1 Peter M. Carlton,3 John W. Sedat,3 Jason R. Swedlow,2 and Ilan Davis1

1Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom; 2Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom; 3Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94143-2240

Biomaging is currently undergoing an exciting revolution. This includes all aspects of imaging from probe development, specimen preparation, and instrumentation to image analysis and quantitation. Perhaps the most exciting developments are new platforms for imaging that radically advance the capabilities for collecting high spatial and high temporal resolution data. In many cases, the standard microscope has been replaced with new purpose-built platforms that are much more flexible and enable the implementation of new imaging modalities such as particular single-molecule and super-resolution imaging methods.

For live cell imaging, there are a number of competing critical requirements. Any live cell imaging system must be physically stable so that vibrations and temperature shifts do not move the sample or the optical path. This requirement is undermined by the need to change focus and to collect images as rapidly as possible. Fast live cell imaging thus requires a very stable, rapidly, and accurately moving imaging system with little vibration or temperature change. Photobleaching and photodamage limit the photon budget, the number of photons transmitted through the microscope. When working at photon-limited levels, any additional sources of background and noise, such as stray light or noise from camera electronics, must be avoided. A recent study has highlighted the presence of additional non-Poisson noise in all tested commercial imaging platforms (Murray et al. 2007). Thus, photon-limited imaging is extremely challenging on traditional microscope platforms.

In this chapter, we discuss the design principles and applications of the OMX microscope, a new platform that provides unprecedented mechanical and thermal stabilities coupled with a photon budget that is dramatically improved over traditional microscope platforms. These characteristics make the OMX microscope outstanding for fast live cell imaging and super-resolution imaging. Moreover, its open flexible architecture makes it particularly amenable to adding other modes of microscopy to the platform.

HISTORY AND DESIGN OF OMX

OMX was designed and built by John Sedat in collaboration with David Agard (both at the University of California, San Francisco [UCSF]) and a number of coworkers including Mats

*Joint first authors.
Gustafsson (now at Janelia Farm Research Center), Lukman Winoto, and Peter Carlton. The microscope's name is derived from the original name that Agard and Sedat gave to their first wide-field deconvolution microscope, Optical Microscope 0 (OM0). OM0 was based on a Zeiss Axiomat, with an LN2-cooled charge-coupled device (CCD) camera from Texas Instruments, and was run from a VAX 8650 mainframe computer. OM0 was used to acquire the first three-dimensional (3D) fluorescence images of cellular structures (Agard and Sedat 1983). There followed OM1, a turnkey, Silicon Graphics, Inc., workstation-controlled microscope that included fiber-optic illumination and stage-based focusing on an inverted microscope, and this provided some of the first 3D fluorescence images of living cells passing through the cell cycle (Minden et al. 1989). This was later commercialized as the DeltaVision microscope (Applied Precision, Inc. [API]), which continued its own path of development. The X in OMX stands for “eXperimental,” as the microscope is a continuously evolving platform that allows further development and improvement.

Traditional microscope stands have to take into account optical performance, cost, and ease of use. The optical path is designed to accommodate a range of additional components as well as the microscopist sitting at the microscope using the eyepieces and controls. Consequently, the efficiency of light transmission and the suppression of stray light are compromised. Additionally, it is difficult to rapidly and efficiently capture two channels simultaneously in wide-field microscopes, and capturing three or four channels simultaneously is nearly impossible. Although laser-scanning confocals can often capture multiple channels simultaneously, they are relatively slow, taking seconds to minutes per image stack, and have much lower photoefficiency (Murray et al. 2007). OMX was designed and built to provide a flexible platform that would be a foundation for many different modes of microscopy and to reduce the limitations found in conventional microscope platforms.

OMX includes separate modules for illumination, imaging, microscope control, and locating the sample. The layout and individual components are shown in Figure 1. For illumination, OMX uses solid-state continuous-wave lasers to provide bright monochromatic illumination. At least five separate lasers can be installed in the laser bed. Shuttering is achieved using individual solenoids that can operate reliably down to 1-msec opening time, and six-position wheels carrying neutral-density filters provide attenuation to control the excitation light intensity very precisely. At any time, all active lasers are focused into one of two fibers that provide alternative light paths into the microscope body. In the current implementation of OMX, one path is used for fast live cell imaging using conventional optics, and the other is used for three-dimensional structured illumination microscopy (3D-SIM). As described below, the flexible open design of OMX allows many alternative configurations.

The microscope is based on a solid-metal-block platform drilled to allow fitting of components. The block holds a kinematically mounted drawer that contains the elements of the fluorescence light path. This base is mounted on an antivibration table, and the whole assembly is housed in an acoustically isolated thermally controlled room. For fluorescence, the light path has been optimized to collect emission light, somewhat at the expense of excitation light. This block-and-drawer configuration replaces the standard microscope stand. The stage and lens mounting are made of Invar, a nickel–steel alloy with a very low coefficient of thermal expansion. Instead of using a rotating turret with a focus knob to raise, lower, and quickly change objectives, OMX objectives are fixed into kinematically mounted Invar plates adding stability and reproducibility. Focus change for optical sectioning is achieved by a piezoelectric device that changes the position of the stage and sample while leaving the lens fixed in place. Two Nanomover motors (Melles Griot) are used for translation in the image plane. There are no binoculars, and the microscope is kept isolated from the user in a filtered temperature-regulated environment. Up to four separate cameras can be mounted on OMX enabling fast and simultaneous multichannel data acquisition.

The fluorescence drawer used in OMX contains four beam splitters (BS1–4) that direct emitted light to the cameras (Fig. 1). The central beam splitters (BS1 and BS2) permit all wavelengths of excitation light to pass through virtually unreflected; the very small amount of reflected light
FIGURE 1. OMX components and layout. (A) Schematic of the optical setup of OMX. (B) The light path for the live cell drawer configuration to enable the use of simultaneous imaging of fluorescent combinations including CFP/YFP, GFP/mCherry, and CFP/YFP/mCherry. (C) A photograph of the OMX microscope body. (A, Courtesy of Paul Goodwin, APL B, © 2008 American Association for the Advancement of Science. Used by permission.)
is blocked by light traps suppressing stray light and, hence, reducing background. Emission light returning from the sample is reflected by the beam splitters to the appropriate cameras. First, both red and far-red light are reflected by BS2 to the left, where BS3 reflects red light to one camera and allows far-red light to pass through to another. Green and blue light pass through BS2, but both are reflected by BS1 to BS4, which directs green light to one camera and allows blue light to pass through. Drawers containing different beam-splitter arrangements may be easily switched in and out to allow simultaneous imaging of various combinations of fluorophores. Multiple cameras and a simply exchanged filter assembly allow the emitted light to be split in other ways such as by polarization.

OMX is controlled by a group of Windows-based computers that provide all user interfaces and control of the cameras, shutters, and other devices. The software controlling the system is written in C++ and Python. The Python source code is directly accessible on the computer during active operation and can be modified and reloaded at will. Users can issue commands or create new scripts via the built-in Python interpreter to control operation of the microscope at many levels, at any degree of sophistication desired. This flexibility allows complex illumination strategies such as those required for PALM-type experiments to be easily implemented. All functions running on auxiliary computers are accessible from the main control computer over the network via the Pyro distributed-object system (http://pyro.sourceforge.net/). Most user actions are saved to logs, so imaging sessions can be exactly recreated or debugged in case of problems. Furthermore, the temperature of the stage, the microscope body, the motors, and the entire room is continuously monitored and saved to disk, so users are aware of any possible irregularities.

To make sample finding and setup easy, the OMX uses a dedicated conventional auxiliary microscope, the low-magnification microscope (LMX). The LMX has a range of high-working-distance objectives with both transmission and epifluorescence illumination. The LMX has a high-precision motorized stage used for sample location and mapping. This stage is cross-indexed to the OMX stage to allow sharing of coordinates between the two systems. The LMX is configured to enable tile scanning of the entire region of a conventional slide that is within the stage travel of OMX. This tile scan can then be exported to the OMX control computer and used as a location map for finding specific features or locations once the slide has been mounted on OMX.

The workflow for using OMX for fixed samples involves preparing the samples, imaging them first on the LMX using a tile-scan mode in either bright field or fluorescence, and then moving the sample to the OMX stage. The tile scan is transferred to the OMX control computer, and the OMX software is used to locate regions for further imaging. For live cells, a prescan can be performed on the LMX and then used as a basis for finding living cells, or the live cell chamber can be directly mounted on OMX and then scanned using the OMX control software. The tile scan is displayed on the screen using texture mapping, allowing very fast panning and zooming over an entire slide’s worth of image data at high resolution. This arrangement allows the operator to scan the slide at leisure without either illuminating the sample or needing to use eyepieces.

The first OMX prototype, OMX v1, was designed and built in John Sedat’s laboratory at UCSF. API has licensed the OMX design and has built a number of beta systems referred to collectively as OMX v2. The data in Figures 2–6 are from two OMX v2 systems based at the Universities of Oxford and Dundee.

IMAGING APPLICATIONS USING OMX

The first versions of OMX have been outfitted for two specific applications: fast multichannel microscopy for high sensitivity and high temporal resolution analysis of living cells and 3D-SIM for high spatial resolution imaging of fixed cells. In the next sections, we detail the use of these different modes and show examples of the results that can be achieved.
Fast Live Imaging for High Temporal Resolution Analysis

Biological processes operate on a wide range of timescales from submillisecond to many minutes. The drive to develop mathematical models of molecular interactions presumes the availability of high-quality data sets that properly sample these events. Currently, conventional microscopes can record many single images per second. However, when sampling across space (optical sections) and spectral range (as in multichannel fluorescence microscopy), the practical limit of temporal sampling is on the order of ~1 3D image/sec. Any process that occurs on a subsecond timescale is thus subject to temporal aliasing. Furthermore, the raw speed of time-lapse acquisition is not necessarily the key parameter to consider because the efficiency of light transmission and detection determine critically whether useful images can be acquired in any particular set of conditions.

OMX offers two distinct advantages for live cell imaging. First, up to four channels can be recorded simultaneously, or in the case of fluorophores with some spectral overlap, in very rapid sequence such that the delay between sampling at different wavelengths is no more than 1–2 msec. Second, the very bright laser-light sources, fast shutter, rapid and stable focusing, and integration of electronic control mean that very rapid, accurate, and precise 3D imaging is achievable. The current implementations of OMX can record 2–10 3D images/sec for each channel. The fastest we have run our microscopes, with 1-msec exposure, is 93 or 107 images/sec depending on the precise individual prototype. The major speed bottleneck is the read time of the cameras, which for a full-frame image (512 x 512-pixels, 10 MHz, 16 bits) is 13 msec. Reducing the imaging area on the CCD substantially reduces this time.

Most live cell imaging applications make use of fluorescent proteins (FPs). The choice of FP is dependent on the laser lines present on the system and on the brightness and photostability of the proteins. For simultaneous acquisition of multiple wavelengths, well spectrally separated FPs work best. For example, green fluorescent protein (GFP) and mCherry are compatible with the 488 nm and 593 nm laser lines, do not spectrally overlap significantly, and are relatively photostable. Figures 2 and 3 show examples of using this mode of imaging FP-labeled living yeast, Drosophila, and human cells.

To date, OMX uses the Bioptechs FCS2 closed live cell chamber. Samples are grown on or adhered to 40-mm circular (no. 1.5 thickness) coverslips either by their own adherent properties or by coating slides with substances such as polylysine or concanavalin A. The design of the FCS2 system permits temperature control and media exchange but not an environment in which CO2 is regulated. A critical advance for the future is the design and building of an environmental chamber for live cell imaging.

3D-SIM for High Spatial Resolution Analysis

The achievable resolution in light microscopy has been limited to ~λ/2 by diffraction since the development of the modern microscope in the late 1800s. Over the past few years, a number of methods for overcoming this diffraction limit have been developed. These methods are collectively known as super-resolution techniques (Hell 2009).

3D-SIM uses structure within the illumination and multiple images per sample section combined with postacquisition analysis to double the achievable resolution in all three spatial dimensions. By illuminating a fluorescent sample with a sinusoidal striped pattern, additional information from the sample is encoded in the fluorescent emissions (Gustafsson 2000; Schermelleh et al. 2008). The phase of the striped pattern is shifted over a full cycle in five steps and also rotated to three positions at 60° intervals. The resulting 15 images per z section are processed to produce the final super-resolution image. Images of fluorescent beads in both conventional wide-field microscopy and 3D-SIM, with profiles showing the resolution improvement, are shown in
Figure 2. Live cell imaging with OMX showing *Saccharomyces cerevisiae* with mCherry-labeled nuclear pore complexes and GFP-TetO-tagged chromosome IV (13 z sections, 0.3 μm apart, time lapse 780 msec). Wavelengths were acquired simultaneously on OMX v2 and then aligned and fused. The images have been deconvolved, and the maximum intensity is projected. Numbers indicate elapsed time in seconds. Scale bar, 5 μm. (Courtesy of Emma King and David Dickerson, University of Dundee, and Paul Goodwin, APL.)

Figure 4. The achievable resolution varies from 105 nm with 405 nm illumination to 165 nm with 593 nm resolution (Gustafsson 2000).

As implemented on the current versions of OMX, 3D-SIM is realistically useful for fixed specimens. With that caveat, 3D-SIM on OMX has been successfully applied to a broad range of specimens—microorganisms, vertebrate cells, tissue sections, and even whole embryos. Our own microscopes have been used by a variety of collaborators, and these data will be published elsewhere. Figures 5 and 6 show two examples of the application of OMX in cultured *Drosophila* macrophages and HeLa cells (Fig. 5) and a section of fixed mouse colon (Fig. 6). The improvement in axial resolution in comparison with conventional deconvolution or confocal imaging is apparent in the subcellular structures visible in these images. For example, the diameters of microtubule fibers are closer to their true sizes, and overlapping and dense fields of microtubules or actin networks can be resolved into individual fibers much more readily.

Sample Preparation and Imaging Protocols for 3D-SIM

Sample preparation for imaging using the structured illumination (SI) protocol on OMX does not vary greatly from that used for image acquisition on other systems. However, emphasis needs to be placed on good practice to ensure a specific, bright, and photostable fluorescent signal as well as good morphological preservation. Fixation should be of the highest quality that is consistent with preserving epitopes and the fluorescence of FPs as appropriate.
The system is designed for use with scrupulously clean 1.5 (0.17 mm thick) coverslips. So far the system has been used to image material within 16 µm of the surface of the coverslip. The fixation conditions and the choice of primary antibody (one that localizes strongly to the structure of interest) need to be optimized to achieve a good signal-to-background ratio, thus optimizing reconstruction output and minimizing the generation of reconstruction artifacts. A broad range of samples has been successfully imaged using the SI protocol of OMX—from cell monolayers to mouse-gut wax sections to plant-leaf peels.

There is a wide choice of bright photostable secondary antibodies to match the laser lines available on the system allowing excellent image quality by optimizing the match between the filter systems and the excitation and emission characteristics of the fluorochromes. We have successfully utilized Alexa Fluor–conjugated secondary antibodies (Invitrogen), and recently, Jackson ImmunoResearch, Inc. has released a new DyLight collection that further expands the availability of wavelength-specific antibodies to target a broader range of primary antibodies raised in different species. The 593 nm laser line is compatible with both 568 and 594 nm excitable dyes. Protein fusions of a bright FP, such as GFP, can be used for imaging samples that require a small number of z sections and/or exposure to a limited number of excitation wavelengths. However, the photostability of FPs has so far limited their use in 3D-SIM. Acquisition of images using the 3D-SIM protocol is possible using cameras with electron-multiplying CCD amplification enabled, which has opened the door to the imaging of dimmer samples with low background fluorescence. Furthermore, to protect the fluorescence emitted and to minimize...
FIGURE 4. OMX point-spread functions with and without 3D-SIM. Images (A,B) and line scans (C,D) of 89-nm fluorescent beads illuminated at 488 nm and detected at 510 nm in conventional wide-field- and 3D-SIM-imaging modes. x-y (A) and x-z (B) are shown in conventional wide-field mode (left images) and in a 3D-SIM reconstruction (right images). Profiles through the center of a bead clearly show the increase in resolution between conventional wide-field microscopy (blue) and 3D-SIM (red), in both x-y (C) and z (D), demonstrating the increase in resolution is achieved in z as well as in x-y. Scale bar, 1 µm. (Courtesy of Ian Dobbie, University of Oxford.)

FIGURE 5. 3D-SIM imaging of cultured cells on OMX. Drosophila macrophage cells that have been fixed and stained for F-actin with fluorescein-isothiocyanate (FITC)-phalloidin are shown (A) in a conventional wide-field image and (B) in a 3D-SIM reconstruction; the latter clearly shows the dramatic increase in detail achieved. (C) A formaldehyde-fixed HeLa cell-stained antitubulin and an Alexa Fluor 488 secondary antibody are also shown; these images were acquired using the 3D-SIM protocol on OMX v2. For each panel, the image shown is a maximum-intensity projection through the full volume of the cells. Scale bars, 5 µm. (Parts A and B are from Ian Dobbie and Ilan Davis, University of Oxford. Part C is from Jason Swedlow, University of Dundee, and Paul Goodwin, APL.)
changes of refractive index in the light path, samples should be mounted in a medium that matches the refractive index of the objective lens fitted. The mountant should contain antifade agents such as 1,4-phenylenediamine in a buffer of 90% glycerol and 10% Tris; we have found this to give optimal results, especially with 594 nm excitable dyes.

FUTURE DIRECTIONS

OMX is fundamentally a research instrument and is still under development. Its basic premise of reworking the fluorescence light microscope from the ground up provides a very flexible new platform. Currently, the commercial OMX sold by API is set up for fast live multichannel imaging.
ing and super-resolution 3D-SIM. Adding novel functionality is relatively easy because of the open nature of the excitation light paths and the flexibility of the hardware and software controls. Some of the possible extensions in functionality are discussed below, although this list is far from exhaustive and is continuously evolving.

Two-Dimensional SI Microscopy in Living Cells

3D-SIM on OMX is able to double the resolution compared with a conventional fluorescence microscope. However, there are two major drawbacks to the technique. To perform 3D SI, at least five illumination phases must be recorded at three different angles. Therefore, for each reconstructed image section, 15 images must be recorded. This can cause substantial photobleaching and very slow acquisition because of the large number of images required. Data collection is further slowed by the fact that the current implementation of OMX rotates a physical diffraction grating to take images with the SI at different angles. This process requires ~2 sec per angle change. To properly perform reconstructions to provide the higher-resolution output image, any structure of interest must not move during imaging by a significant fraction of the 100 nm resolution. In the current generation of OMX, the minimum time to take a full SI z series is ~10 sec, long enough for the internal contents of the cell to move substantially more than 100 nm. This situation can be improved in two complimentary ways. First, by providing z sectioning via total internal reflection fluorescence (TIRF), only a single z section is required, and the number of images that are captured is reduced to 9, three phases at three angles. It should be noted that this provides a single-section super-resolution image rather than a 3D-image stack. Second, using a spatial light modulator, the diffraction grating angle can be changed without physically moving the optical elements. Combining these two approaches allows single two-dimensional (2D) TIRF super-resolution images to be collected in <100 msec (Kner et al. 2009).

TIRF

TIRF is a method for achieving 100 nm z resolution combined with very low fluorescence background. This is achieved by illuminating the sample with light above the critical angle for complete reflection between the coverslip and the sample. This produces an evanescent wave parallel to the coverslip that falls exponentially with distance from the interface (see Chap. 36). Multiwavelength objective-based TIRF has been implemented on the Sedat laboratory OMX by redirecting the standard wide-field illumination into a multiwavelength single-mode fiber. This fiber is then translated to shift the position of the beam path in the back focal plane. This allows rapid changes of the angle of incidence to achieve TIRF at different wavelengths for multicolor live TIRF imaging.

3D TIRF

The precise control of the angle of incidence on OMX also allows the acquisition of TIRF images at a range of angles all above the critical angle. In this way, an image stack can be created by steadily imaging further into the sample. Image processing allows calculation of the depth of objects within the image with very high z resolution. This technique allows imaging with 100 nm z resolution to depths up to 1 µm.

Image Processing for Live Cell Imaging

A primary design aim of OMX is to maximize the signal-to-noise ratio (SNR) to gather as much data as possible from limited illumination intensity and short exposures that occur in fast imaging of highly photosensitive living cells. Analyzing the data generated in fast live imaging requires
the implementation of object identification and tracking software that can track rapidly moving particles in images with limited SNR (Jaqaman et al. 2008). These tools are critical for delivering quantitative measurements of objects recorded in live cell imaging (see Chaps. 13, 15, and 16).

A promising area for future improvement in fast live cell imaging is the use of image-processing tools to improve SNR and thus the performance of subsequent analysis tools. Deconvolution, used on 3D-data stacks from OMX, is able to improve the SNR using the point-spread function to develop an estimate of the in-focus object in the sample (Swedlow et al. 1997; Wallace et al. 2001; Parton and Davis 2006). In addition, the application of denoising algorithms can substantially improve the appearance of image data. Denoising relies upon the fact that signal but not noise is correlated between adjacent pixels in 2D or 3D. In 2D, denoising is relatively simple and widely applied using processes such as a Gaussian or a median filter. Extending this to 3D further improves the SNR because extra information is available. Recently, more advanced algorithms have become available. By applying denoising techniques to four-dimensional image sets, 3D data in time, even more SNR improvement can be gained.

Photoactivation Localization Microscopy

A second technique for generating so-called super-resolution images, with a precision >20 nm, is photoactivation localization microscopy (PALM) (Betzig et al. 2006). This technique works by iteratively building up an image from the fluorescence emission of individual dye molecules imaged in a stochastic manner, a small number at a time. Basic 2D PALM, as described above, can be achieved easily on OMX, as it simply requires a custom illumination pattern, low-intensity activation pulse, followed by multiple frames of standard excitation imaging. This can either bleach out the active molecules or be followed by a deactivation pulse. z-position information can be added to this by either taking images at two z positions (Juette et al. 2008) or by using an imaging system with astigmatism (Huang et al. 2008). The multiple cameras and simple filter arrangement on OMX allow multiple z positions to be simultaneously acquired using a 50–50 beam splitter between the two channels and introducing an extra lens into one channel producing a focus shift relative to the other channel. Alternatively, astigmatism can be easily introduced by having a cylindrical lens in the illumination path. On OMX, this is easily achieved because of the open access to the illumination beam path.

CONCLUDING REMARKS

Because of its flexibility, the OMX platform is still rapidly evolving. We anticipate that many more functionalities will be added to the platform, as essentially all applications of wide-field fluorescence microscopy can be improved by taking advantage of the improved light budget, stability, and simultaneous acquisition characteristics of the system.

ACKNOWLEDGMENTS

We thank Sam Swift, Chris Allan, and Benny Chitambira for help in running the University of Dundee OMX; Paul Appleton, David Dickerson, Markus Posch (University of Dundee), and Paul Goodwin (API) for permission to use their figures in this chapter; Kim Nasmyth for discussions on the biological applications of OMX; and Tim Weil for his help acquiring swallow and bicoid time-lapse images. The purchase and use of the University of Dundee OMX microscope is supported by the Scottish University Life Sciences Alliance. Work in the Swedlow Laboratory using OMX is supported by the Wellcome Trust (067433), Cancer Research UK (C303/A5434), and the Biotechnology and Biological Sciences Research Council (BB/G01518X/1). I.D. and R.M.P. are
supported by a Senior Research Fellowship from the Wellcome Trust (081858) to I.D. OMX was purchased in Oxford with grants from the Wellcome Trust, E.P.A. Cephalosporin fund, and Oxford University Press Fell Funds.

REFERENCES

Index

A
Abdominal window preparation in mice, 476, 477t, 494
Acceptor photobleaching, 98–99, 99f, 108–110
AcGFP, 612
Acousto-optical tunable filters (AOTFs), 71, 75, 663, 681
Actin, GFP-tagged, 36, 190–193, 190f
Actin-depolymerizing drugs, 630
Actin promoter, 36
Activated sodium orthovanadate (recipe), 116
Acute (exteriorized) tissue preparations, 477t, 478, 478f
ADC (analog-to-digital converter), 341, 342
Adhesions, micropatterning cell-substrate, 43–51
Aequorea coerulescens (jellyfish), 16
Aequorea victoria (jellyfish), 3
Aequorin, 3, 6
AFM. See Atomic force microscopy (AFM)
Agard, David, 203
Aggrecans, 187
Agrobacterium tumefaciens preparation of competent cells, 376
transferring vectors into, 373, 381
Anesthesia, 425, 436–438, 447, 448, 453, 459
Antibody for determination of protein fusion location, 40
for determination of protein fusion size, 41
labeling with fluorescent dyes, 103–105
AOTFs (acousto-optical tunable filters), 71, 75, 663, 681
APB. See Acceptor photobleaching
APD (avalanche photodiode), 112, 232
Arabidopsis thaliana. See Plants, live cell imaging of
Articular cartilage, imaging tissue using AFM, 187–189, 188f
AsRed2 (fluorescent protein), 12
Assembly buffer (recipe), 600
Atomic force microscopy (AFM), 183–301
for mechanical testing of biological samples, 186, 186f
microscope setup, 184–185, 184f
operating principles, 183–184
optical microscopy combined with, 184–185, 184f
perfusion of sample, 185
probes, 185
protocols
imaging articular cartilage tissue, 187–189, 188f
imaging collagen II, 194–197, 196f, 197f
imaging fibroblast cells, 190–193, 190f, 191f
microsphere tip preparation, 198–200, 199f
temperature control, 185
ATP depletion, 630
ATV solution (recipe), 200–201
AutoAligner (software), 73t
Autofluorescence noise, 634
in thick Drosophila specimens, 401
in yeast, 343
Autofocus image-based, 288
reflection-based, 288
AutoQuant (software), 702
Avalanche photodiode (APD), 112, 232
Averin, 425
AxiomVision (software), 289
Azami Green (fluorescent protein), 9t, 10
Azides, 528–529
Aurora (fluorescent protein), 7, 9t
Bacterial artificial chromosome (BAC) vectors, 542–543, 546, 552–555, 614
Bandpass filter, 325, 340, 340f, 349
Beer–Lambert law, 702, 706
Benchmarking, simulation-based, 279
Berkeley Madonna (software), 73t
BFP. See Blue fluorescent protein (BFP)
Biarsenicals, labeling with fluorescent photoconversion of 1,2-diaminobenzidine tetrachloride (DAB), 465, 467–468, 468f, 469f, 472–474
live cell imaging for correlative microscopy, 463–467
acquisition design, 467
cell growth imaging medium, 466–467
chambers for live cell imaging, 465–466
preparation of labeled cells, 463–467
protocols
fluorescence photoconversion of biarsenical-labeled cells for correlated EM, 472–474
labeling tetracycline-tagged proteins with biarsenical dyes, 470–471
tetracycline-tagged proteins, generating, 463–464
transfection strategies, 464
Bimolecular fluorescence complementation (BIFC) assay for plant protein–protein interactions, 375–379
split fluorescent proteins and, 29
use of fluorescent protein fusions in, 35–36
Bind-silane working solution (recipe), 51
Binning, camera, 59–60, 60f, 65, 341
Bit depth, 285
CCD camera, 59, 285
Blue fluorescent protein (BFP), 7, 9, 9t
Bodipy ceramide, 631
Bower, Theodor, 351
Brefeldin A, 629
Brenner, Sydney, 352
Bright-field microscopy. See also specific applications
magnetic twisting cytometry, 262
passive microrheology, 265
total internal reflection fluorescence (TIRF) microscopy, 683
Brightness, in live cell imaging, 337–342
for camera setup, 341–342
choosing an objective, 338–339
dichroic mirrors, 339, 340
filters, 339–340, 339f, 340f
Brownian motion, 264
BS-C-1 cells, 572–573, 573t, 574f
Bubulya, Paula, 37
Bütschli, Otto, 351
Classification, in quantitative image analysis, 240, 240f, 252–253
Click chemistry, 529–530, 529f
CLIP-170, 613, 614
CLIP tag, 668, 670
Clock-induced charge noise, 62–63
CLSM. See Confocal laser-scanning microscopy (CLSM)
C-MOS (complementary metal-oxide semiconductor) camera, 238
Colcemid, 578
Colchicine, 569–570, 570f
Collagen II, imaging using AFM, 194–197, 196f, 197f
Collagen dynamics, 484, 485f, 486
Colchicine, 629–630
Colcemid, 578
Complementary metal-oxide semiconductor (C-MOS) camera, 238
Confocal microscopy. See also Confocal fluorescence microscopy; Confocal laser-scanning microscopy (CLSM)
Confocal fluorescence microscopy, 633–635
time-lapse experiment protocol, 633–635
tubulin and microtubule-associated proteins (MAPs), 614
Confocal microscopy. See also Confocal laser-scanning microscopy (CLSM)
Deconvolution of images, 163–165, 166f
Environmental chamber for microscope, 161, 162f
Features, 395f
Fluorescent labels, 158–159
guidelines for generation of reliable images, 166–167
imaging modes, 157–158
instruments, 154–157
array scanning, 154f, 157, 168
beamscanning, 155–156
disk scanning, 154f, 156, 168, 178
multiple-pinhole, 156–157, 169f
point scanning, 395f, 678, 678f
slit scanning, 154f, 156, 395f
specimen scanning, 154–155
spinning-disk, 168, 169f, 178, 395f,
613, 678, 678f
spot scanning, 154, 154f, 168, 169f,
images, 177–178
tandem scanning, 156–157
laser, 158–159, 159f
limitations, 167–168
lipid imaging in living cells, 526–527, 526f
multiphoton microscopy compared to, 442–443, 443f
multiple labels, simultaneous imaging of, 159–160
optical principles, 151–154, 153f, 154f
patterned noise artifacts, 163, 164f
photobleaching and phototoxicity, 161–163, 162f
practical aspects of, 166
signal-to-noise ratio, 163, 164f, 165, 167,
177–179, 178f
specimen preparation, 160–161
thick specimen imaging, 151–172
total internal reflection fluorescence and spinning-disk confocal microscopy, 119–138
Total internal reflection fluorescence (TIRF) microscopy compared, 678, 678f
Troubleshooting, 168–172
tubulin and microtubule-associated proteins (MAPs) imaging, 613–614
Wide-field microscopy compared, 152f,
153f, 169f, 178f
Contrast enhancement, nonlinear, 290
Contrast reversals, 143–144, 143f, 144f, 163, 163f
Contrast-transfer function (CTF), 141–145, 143f
Convolution, 144
discrete, 241
Coen spern pole assay in rabbits, 477t, 479, 479f, 500
Correlative microscopy, live cell imaging for, 463–474
Acquisition system design, 467
microprobe configurations, 467
signal detection, 467
cell growth imaging medium, 466–467
chambers for live cell imaging, 465–466
fluorescent photoconversion of 1,2-diaminobenzidine tetrachloride (DAB), 465,
467–468, 468f, 469f, 472–474
preparation of labeled cells, 465–467
protocols fluorescent photoconversion of biarsenical-labeled cells for correlated EM, 472–474
labeling tetracycline-tagged proteins with biarsenal dyes, 470–471
Cranial window preparation in mice and rats, 476f, 477f, 491–492
Critical angle, 676, 676f
CTF (contrast-transfer function), 141–145, 143f
Cyan fluorescent protein (CFP), 9–10, 9f
for imaging gene expression in living cells, 566–568, 569f
multiphoton imaging of tumors in vivo,
445, 445f, 448–449, 450f
tetracycline-tags and biarsenicals, use of, 467
vimentin, 587, 587f
Cycloheximide, 630
CyGEL, 322
Cytchalasin B, 630
Cytomegalovirus promoter, 36, 612, 700
Cytoskeleton dynamics, imaging, 691, 693f
methods for expressing and analyzing GFP-tubulin and GFP-microtubule-associated proteins, 605–617
Cytotoxicity, photobleaching-induced, 80–81
DAB (1,2-diaminobenzidine tetrachloride), fluorescent photoconversion of, 465, 467–468, 468f, 469f, 472–474
DAG (diacylglycerol), 523, 530
Data acquisition acquiring a digital imaging, 287
autofocus, 288
computer control of imaging devices and peripherals, 288–289
maximizing information content, 287–288
software tools, 289
Data mining, 311–312
Deblurring, 290
Deconvolution, 140–150
of confocal images, 163–165, 166f
constrained iterative, 145–147, 146f, 147f
Deblurring techniques, 290
image preprocessing, 224–225
limitations of, 149–150
optical principles and, 140–144
restoration techniques, 290
Deconvolution, 140–150
of confocal images, 163–165, 166f
constrained iterative, 145–147, 146f, 147f
Deblurring techniques, 290
image preprocessing, 224–225
limitations of, 149–150
optical principles and, 140–144
restoration techniques, 290
Deconvolution, 140–150
of confocal images, 163–165, 166f
constrained iterative, 145–147, 146f, 147f
Deblurring techniques, 290
image preprocessing, 224–225
limitations of, 149–150
optical principles and, 140–144
restoration techniques, 290
Deconvolution (continued)

in RNA quantification, 702

tips for reliable image generation, 148

of wide-field microscope images, 144–148, 147f

Delaunay triangulation function, 652

Dendra2 (fluorescent protein), 16f, 17, 453, 454, 454f

Denoising, in image preprocessing, 241–242, 243f

linear filters, 241–242

nonlinear filters, 242, 243f

Detector noise, 323

Detergent buffer (recipe), 601

Dialysis buffer (recipe), 602

DFCS culture medium (recipe), 201

Diacetyl glycerol (DAG), 523, 530

Diassembly buffer (recipe), 602

Dialysis buffer for inclusion bodies (recipe), 601

1,2-diaminobenzidine tetrachloride (DAB), fluorescent photoconversion of, 465, 467–468, 468f, 469f, 472–474

Dichroic mirrors, 339, 340, 420, 664–665

Differential interference contrast (DIC), 149 in passive microrheology, 265

total internal reflection fluorescence and spinning-disk confocal (TIRF/SDC) microscope system, 119, 125

Diffraction limit, 334

Diffusion, in photoperturbation experiments, 86–91

Diffusion time, fluorescence correlation spectroscopy (FCS) and, 230, 236–237

Digital images

Bio-Formats, 286

bit depth, 285

description of, 284

file format tools, 286

metadata, 285

monochrome vs. color, 285

multidimensional five-dimensional image, 284

proprietary file formats, 285–286

software tools for, 284–287

standardized file formats, 286–287

Digital scanned laser light sheet fluorescence microscopy (DSLM), 215–227

advanced implementations of, 227, 227f

comparison with other microscopy forms, 221–226

cost efficiency, 226

dynamic range, 225–226

illumination efficiency, 221–222

illumination pattern, 224

imaging speed, 224–225

lateral and axial extents of point-spread function, 223–224

performance, 226f

photobleaching, 222–223

components, 216, 218–220, 218–221, 218f

computer/software, 220

detection system, 218–219, 221

illumination system, 216, 218, 220–221

technical blueprint, 218–219

features, 395f

overview, 215–216

sample images, 217f

Dihydrofolate reductase gene, 545, 545f, 547, 560, 565

Diiodomethane, 677

Diode-pumped solid-state (DPSS) lasers, 681

Disassembly buffer (recipe), 602

Discoma striata, 12

Displacement index, 650

DMF (recipe), 115

DNA

preparation of large quantities of vector DNA, 530–531

purification and sterilization of vector DNA by ethanol precipitation, 556

Doppler OFDI (optical frequency domain imaging), 482, 482f, 487

Dorsal skin chamber preparation in mice, 476, 476f, 477f, 490

DPSS (diode-pumped solid-state) lasers, 681

Dronpa (fluorescent protein), 17, 70

Drosophila, live cell imaging in, 387–415

Drosophila as a model organism, 338, 387

effects of, in different tissues, 389f

as experimental approach, 401–402

fluorescence microscopy techniques, new and emerging, 402–404

fluorescent reagents, 391–394

external application of dyes, 391–392

fluorescent proteins, 393–394

microinjection, 392–393, 392f

preparation of material, 388–391

optimal conditions for culturing tissues, 390f

tissues amenable to time-lapse imaging, 388

tissue viability, maintaining, 388, 390–391, 391f

protocols

collection and mounting of embryos, 407–409, 407f

isolation of egg chambers, 405–406, 405f

larval fillet preparation and imaging neurons, 413–415, 414f

macrophage preparation and screening, 410–412, 410f, 411f

selection imaging equipment and methodology, 394–399

contrast-enhancing bright-field methods, 397

detectors, 399

fluorescence-imaging system selection, 397–398, 397f

imaging techniques, 395f

microscope selection, 394, 396f

microscope system evaluation, 394

objective selection, 398, 399f

optimizing excitation and emission, 396

thick specimens, problems with imaging, 399–401

DSLM. See Digital scanned laser light sheet fluorescence microscopy (DSLM)

DsRed (fluorescent protein), 11, 12, 612

Dulbecco’s PBS (recipe), 536

Dyes, organelle-specific, 631

Dynamic range, CCD camera, 59, 225–226

Dyein

molecule movement, kymographs of, 666–667, 666f

motility assay (protocol), 673–674

E

EBCCD (electron-bombardment CCD), 61–62

EBFP. See Enhanced blue fluorescent protein (EBFP)

EB1-GFP, 61f

ECFP. See Enhanced cyan fluorescent protein (ECFP)

ECM (extracellular matrix), multiphoton imaging and, 442–443

ECM coating solution (recipe), 51

EGF (epidermal growth factor), 95, 458–459

EGFP. See Enhanced green fluorescent protein (EGFP)

EGF receptor (EGFR) phosphorylation, 97–101, 99f, 101f, 103

Egg chambers, isolation of Drosophila, 405f

Egg salts solution (recipe), 366

Elastic modulus, 258, 258f, 259, 261f, 266

Electron-bombardment cooled charge-coupled device (EBCCD), 61–62

Electron microscopy, correlated live cell light microscopy with, 463–474

Electron-multiplying cooled charge-coupled device (EMCCD), 62–63, 62f, 121, 133–135, 323, 399, 544, 679, 683

Electroporation, for transfection of mammalian cells, 36, 37, 38–39

Emerald (fluorescent protein), 9t, 10, 16

Endocytosis, imaging, 691, 694f

Endogenous tracers, as probes for passive microrheology, 265

Endosperm, 571

Enhanced blue fluorescent protein (EBFP), 7, 9f

Enhanced cyan fluorescent protein (ECFP), 4f, 6, 9t, 10, 372

Enhanced green fluorescent protein (EGFP), 4f, 5, 9t, 10, 69–70, 71, 372

lac operator–tagged, 543, 544, 546, 547

tubulin tagging, 611–612

Enhanced yellow fluorescent protein (EYFP), 4f, 6, 9t, 11, 372

Entacmaea quadricolor (sea anemone), 12

Environmental control devices, 345–346

in vivo imaging of mammalian cells, 319

Eos (fluorescent protein), 16f, 17

Epidermal growth factor (EGF), 95, 458–459

Epi-fluorescence microscopy for intravital microscopy, 480, 480f

optical elements of, 339–340, 339f

total internal reflection fluorescence (TIRF) microscopy, 684, 692
ER tracker, 631
Ethyl carbamate, 425
Excess noise factor, 63
Exocytosis, imaging, 691–692
Extracellular matrix (ECM), multiphoton imaging and, 442–443
Extraction buffer (recipe), 600
EYFP. See Enhanced yellow fluorescent protein (EYFP)

F
FLAsH-EDT2, 41, 632
FCCS. See Fluorescence cross-correlation spectroscopy (FCCS)
FCS. See Fluorescence correlation spectroscopy (FCS)
FLASH (biarsenical reagent), 464, 467–468, 470
Fibroblasts, imaging using AFM, 190–193, 190f, 191f
FIDA (fluorescence intensity distribution analysis), 231
File formats, for digital images, 285–287
File system, storing data on, 293
Filters
acoustooptical tunable filters (AOTFs), 71, 75, 663, 681
epifluorescence microscope, 339–340, 339f, 340f
bandpass, 340, 340f, 349
high-pass, 340, 340f
neutral density, 340
short-pass, 340, 340f
fluorescein isothiocyanate (FITC) filter sets, 10, 11
identifying optimal, 610
for image denoising, linear filters, 241–242
nonlinear filters, 242, 243f
Kalman, 251–252
total internal reflection fluorescence (TIRF) microscope, 664–665
Fire, Andrew, 353
Fire vectors, 354–355, 354f
FISH (fluorescent in situ hybridization), 697, 702, 706–710
FITC, caged, 402
FLIM. See Fluorescence lifetime imaging microscopy (FLIM)
FLIP. See Fluorescence loss in photobleaching (FLIP)
Flow cytometry, selection of stable transformants with high-copy-number chromosomal insertions of DHFR transgene, 560
Fluorescein isothiocyanate (FITC) filter sets, 10, 11
Fluorescence correlation spectroscopy (FCS), 101–102, 229–238
correlation curve shift, 236–238
diffusion time, 230
as function of viscosity, 236–237
FRAP, discrepancy of results with, 91–92
parameters and properties, 230–231, 231f
count rate per molecule, 231
diffusion time, 230
number of molecules, 230
setup and measurement protocol, 232–235
determination of structure parameter, 233
initial adjustment, 232
initial measurement, 232
laser power adjustment, 233–234, 233f
laser power for in vivo measurements, 234
laser power plot vs. count per molecule, 234
materials, 232
troubleshooting, 234
total internal reflection (TIR-FCS), 236–238, 684
Fluorescence cross-correlation spectroscopy (FCCS), 96, 96f, 101–102
measuring protein interaction by, 114–115
Fluorescence-decay profile, 100–101
Fluorescence intensity distribution analysis (FIDA), 231
Fluorescence lifetime, 100–101, 101f
Fluorescence lifetime imaging microscopy (FLIM), 100–101, 101f, 112–113, 402, 451, 683
Fluorescence loss in photobleaching (FLIP), 68, 68f, 77, 78, 83, 587, 589
Fluorescence microscopy
confocal dynamic range, 225
illumination efficiency, 222
imaging speed, 225
lateral and axial extents of point-spread function, 223–224
light sheet–based fluorescence microscopy (LSFM) compared, 215
lipid imaging in living cells, 526–527, 526f
photobleaching, 222–223
labeled infiltration, 526–527, 526f
total internal reflective fluorescence microscopy (TIRF) compared, 227, 527f
wide-field microscopy, 526 resolution, 57–58
Fluorescence photoactivated localization microscopy (FLIM), 404
Fluorescence photoconversion, 463, 465, 467–468, 466f, 469f, 472–474
Fluorescence ratio imaging microscopy (FRIM), 514
Fluorescence recovery after photobleaching (FRAP), 67–92, 238, 402
analysis of time-lapse acquisitions, 81–83
background subtraction, 82, 82f
corrections, 82–83, 82f
image alignment, 81–82
normalization, 82f, 83
photobleaching, 82, 82f
steps in image analysis, 82f
artifacts
cell movement, 81
cytotoxicity, 80–81
focus drift, 81
laser intensity fluctuations, 80
reversible photobleaching, 79–80
bleaching-induced cellular damage, 80–81
calibrating 3D shape of photoperturbed region, 78
controls, 79
experimental technique, 74–78
deciding when to stop, 78
image acquisition parameters, 74–75, 77
photoperturbation, 77–78
prebleached image acquisition, 77
fluorescent probes, 69–70
chemical fluorophores, 69
dark states of, 76f, 79–80
phototrollable, 70
for photobleaching, 69–70
photoconvertible, 70
future of, 91–92
GFP-lamin, 587, 589
image acquisition parameters
detector gain and offset, 75, 77
laser power and transmission, 75
pinhole settings, 74–75
scan speed/scan average/acquisition frequency, 75, 76f
scan zoom/scan field, 75
intravital microscopy in mice, 487
inverse (iFRAP), 68, 627–628, 627f
microscope setup, 70–73
laser fluctuation, controlling, 71
laser selection, 71
microscope objectives, 71–73, 72f
photoperturbation mode, 71
software for microscope operation, 73
modeling redistribution kinetics, 83–91
averaging parameters from different cells, 91
diffusion and reaction limited redistribution, 91
diffusion-limited redistribution, 86–87, 87f, 89, 90f
interaction-limited redistribution, 86–87, 87f, 89
qualitative analysis, 83, 84f
quantitative analysis, 83–84
space independent variables, defining, 85–86
spatial diffusion-reaction modeling, 85, 85f
two-dimensional vs. three-dimensional modeling, 86, 87f
reversibility of bleaching, 79–80
software for data analysis, 73, 73t
techniques commonly used, 67–68, 68f
Fluorescence resonance energy transfer (FRET), 402
acceptor photobleaching, 98–99, 99f, 108–110
biosensors, 26–29
description, 97
dimerization of fluorescent protein fusions, 7
fluorophore pair, choosing, 97, 98f
lipid imaging in living cells, 523
protocols
acceptor photobleaching, 108–110
antibody labeling with fluorescent dyes, 103–105
cell preparation for FRET, 106–107
Fluorescence resonance energy transfer (continued)
measurement by confocal time-correlated single-photon counting fluorescence lifetime imaging, 112–113
measurement by sensitized emission, 111
quantification by donor quenching, 97–99, 99f by fluorescence lifetime imaging, 100–101, 101f by sensitized emission of the acceptor, 99–100, 111
tetacysteine tags and biarsenicals, use of, 467
Fluorescent analog cytochemistry, 605–606
Fluorescent dye, antibody labeling with,
Fluorescent in situ hybridization (FISH), 603–604
Fluorescent Fire vectors, 354–355, 354t
Fluorescent in vivo imaging of mammalian cells, 371–372
Fluorescent protein fusions (FPFs)
constructing, 35–36
expressing, 36–37
functionality of protein, 40–41
localization of protein, 40
transfection of mammalian cells (protocol), 38–41
folding of, 36
for live cell imaging of plants, 372–374
cloning strategies, 372–373
transferring vectors into Agrobacterium, 373
transgenic plants expressing, generation of, 373
validating by rapid, transient expression, 373
for in vivo imaging of mammalian cells, 318–319
Fluorescent proteins (FPs)
applications, 18–29
biosensors, 26–29, 27f
common uses in living cells, 18
digital imaging tips, 21–22
multicolor imaging, 22–25
practical aspects of use, 18–21, 19f, 20f
specialized, 25–29
biosensors
bimolecular fluorescence complementation (BiFC) assay, 29
calcium, 27–28, 28f
phosphorylation, 28
protease-cleavage assay, 28
strategies for, 26–27, 27f, 29
color variants, 7–13
blue, 7, 9, 9t
cyan, 9–10, 9t
green, 9t, 10 (see also Green fluorescent protein)
orange, 9t, 11–12
red, 9t, 12–13
yellow, 9t, 11
dark states of, 76f, 79–80
expression schemes for, 689
filter sets, identifying optimal, 610
future directions, 29
for live cell imaging of Drosophila, 393–394
for live cell imaging of plants, 371–372
for live imaging by subcellular localization, 355t
localization of FP fusions, 7, 8f, 20–21, 21f
long Stokes shift, 13
monomeric, 6–7
multicolor imaging, 22–25
with spectral detection, 24–25, 24f, 25f
without spectral detection, 24–25, 24f, 25f
mutations for use in mammalian systems, 6
in OMX microscopy, 207, 209
optical-highlighter, 13–14, 14t, 15f
photoactivatable, 14, 16, 70
for photobleaching, 69–70
photoconvertible, 16–17, 70
photoswitchable, 17–18
structure, 4–5, 4f
in vivo imaging of mammalian cells, 317–318
Fluorescent speckle microscopy (FSM), 119, 120, 292
Fluorophores
caged, 698
chemical, 69
lipid imaging in living cells, 529–530
multiphoton imaging of tumors in vivo, 448–451, 449f, 450f
in vivo imaging of mammalian cells, 318
Focus drift, 635
Force-curve measurements, 186, 186f
Force mapping, 186, 187, 188f, 191f
Force-volume map, 191f
 Förster distance, 98f
Four-dimensional microscopy
imaging of plant cells during cell cycle (protocol), 380–385
multiple focal-plane time-lapse recording systems for Caenorhabditis elegans, 356
F-PALM (fluorescence photoactivated localization microscopy), 404
FPFs. See Fluorescent protein fusions (FPFs)
FPs. See Fluorescent proteins (FPs)
FRAP. See Fluorescence recovery after photobleaching (FRAP)
FRAP Analyser (software), 73f
FRET. See Fluorescence resonance energy transfer (FRET)
FRIM (fluorescence ratio imaging microscopy), 514
Fruit fly. See Drosophila, live cell imaging in FSM (fluorescent speckle microscopy), 119, 120, 292
FuGENE 6, 192
Full well capacity, CCD camera, 59
Full width at half-maximum (FWHM), 175
Fusion proteins. See Fluorescent protein fusions (FPFs)
G
Gain, setting CCD camera, 65
Gene expression, imaging in living cells, 393–394
Genetic tags, self-labeling, 668
Germination plates (recipe), 385
GFP. See Green fluorescent protein (GFP)
Global-nearest-neighbor (GNN) algorithm, trajectory construction and, 274, 275
Glycosyl phosphatidylinositol-GFP (GPI-GFP), 627, 627f
Goldberg, Ilya, 294
Golgi complex, imaging of, 623, 624f, 625f, 627–628, 627f, 629f, 631, 632f
Green fluorescent protein (GFP). See also fluorescent protein fusions (FPFs); Fluorescent proteins (FPs)
actin tagged with, 190–193, 190f
advantages over fluorescent analog chemistry, 606
color variants, 7–13
in cytoskeleton analysis, 605–617
disadvantages of system, 606
discovery of, 3
features of Aequorea victoria, 4–6
filters for, 340
fusion proteins
construction, 35–36
functionality, determination of, 40–41
localization, determination of, 40
for imaging gene expression in living cells, 565
intermediate filament proteins, GFP-tagged, 584–590, 586f–589f
characterizing, 585
constructing and expressing, 585
keratin, 586–587, 587f
lamins, 587–590, 588f, 589f
peripherin, 586f
type-I and type II IFs, 586–587
type-III IFs, 585–586
type-V IFs, 587–590, 588f, 589f
vimentin, 584–586, 585f, 586f, 587f, 599–600
for membrane system and traffic imaging, 623, 625–628, 631–632, 632f
microtubule-associated proteins (MAPs), GFP-tagged
construction of, 611–612
examples of microtubule-binding protein fusion to fluorescent proteins, 608f–609f
microscopy, 613–614
overexpression, issues associated with, 614
overview of, 610–611
transfection of, 612–613
MS2-GFP system, 698–710

mutations that improve use in mammalian systems, 6
photocyclomutable (PA-GFP), 14, 16, 70, 615, 628
structure, 4–5, 4f
tetracycline tags and biarsenicals, use of, 467
tubulin, GFP-tagged
construction of, 611–612
differentiation of, 611–612
tubulin family, 610
microscopy, 613–614
overview, 610
permanent cell lines for expression of, 615–617
transfection of, 612–613
Ground-state depletion, 159
Gustafsson, Mats, 203–204
H
Halocarbon oil, 390–391, 391f, 392, 405–406, 407, 409
HaloTag, 668, 670
Harakliec features, 310
Hazeness index, 179
HcRed1 (fluorescent protein), 12, 372
Hill, Stefan, 403
Helmholtz coils, 261–262
HEPES buffer (recipe), 537
Heptane glue, 407, 408
Heterodyning, 262
High-content screening microscopy, 297–314
assay development, 297–300, 298f, 299f
data handling and processing, 306–313
experiential setup, 304–306
microscopy system requirements, 302–304
sample preparation, 300–302
Highly ordered pyrolic graphite (HOPG), as substrate for AFM, 194, 195–196
Histone acetytransferase, 566
Histone H3 variant fusions, 380–385
Hit detection, 311
Homogenization buffer (recipe), 601
Homogenization buffer for inclusion bodies (recipe), 601
Hooke’s law, 183
HOPG (highly ordered pyrolic graphite), as substrate for AFM, 194, 195–196
Horvitz, H. Robert, 352
Huygens Professional (software), 702
I
I-CCD (intensified CCD), 61, 420, 431
IDL (Interface Definition Language), 292
IFRAP (inverse fluorescence recovery after photobleaching), 68, 627–628, 627f
IGOR Pro (software), 313
Illumination efficiency
digital scanned laser light sheet
fluorescence microscopy (DSLM), 221–222
Illumination noise, 323
ILOV, 372
Image acquisition
fluorescence recovery after photobleaching (FRAP), 74–75, 77
fluorescent images, 276–279, 277f
mammalian cells, in vivo imaging of, 326–329
acquisition system, choice of, 327–328, 328f
photodamage, 326–327
rate of acquisition, 329
two-dimensional vs. three-dimensional images, 326
variability in behavior between different cells, 327
software tools for, 289
Image analysis. See also Computational image analysis; Quantitative image analysis
critical applications for, 292–293
machine learning methods, 292
object definition, 291
object measurement, 291–292
tools for, 292
Image data management applications, 293–294
file system, 293
software tools, 293–294
ImageJ (software), 73t, 286, 287, 291, 292, 356, 374, 457, 628
Image preprocessing, 240, 240f, 241–243, 242f
denoising, 241–242, 243f
denoising, 241–242, 243f
linear filters, 241–242
nonlinear filters, 242, 243f
Image processing
deconvolution, 242–243
fundamentals of, 290
nonlinear contrast enhancement, 290
platforms, 290–291
software tools for, 290–291
Image+ Pro Software (software), 289
ImageReady CS2, 457
Imaging buffer (recipe), 358
Imaging buffer (recipe), 358
Imaging chambers
correlative microscopy, 465–466
intravital microscopy in the mouse
oral scaffold chamber preparation in mouse, 490
mammary fat pad chamber preparation in mice, 493
rabbit ear chambers, 488–489
mechanical stress, 643–649
membrane systems and membrane traffic, 625–626
Rose chamber, 576–577, 581, 581f, 613, 689
total internal reflection fluorescence microscopy, 689
in vivo imaging of mammalian cells, 319–320
dish-based chambers, 320
microchambers in slide format, 320
Imaging medium (recipe), 638
Immunoblot analysis, of fluorescent protein fusions, 40–41
Immunofluorescence, for determination of protein fusion location, 40
Impulse response of microscope, 334
Incubator, air-curtain, 577
Inducible promoter system, 612
Information capacity, 336–337
Information content, of acquired images, 287–288
Interference reflection contrast microscopy (IRM), 157–158, 158f
Intermediate filaments (IFs), imaging, 583–586
GFP-tagged IF proteins, 584–590
characterizing, 585, 586f
constructing and expressing, 585
keratin, 586–587, 587f
lamins, 587–590, 588f, 589f
peripherin, 586f
type-I and type-II IFs, 586–587
type-III IFs, 585–586
type-V IFs, 587–590, 588f, 589f
vimentin, 584–586, 585f, 586f, 587f, 599–600
mechanical stress analysis, 649–652, 650f
choosing a length scale for subcellular analysis, 650–651
computation of displacement index, 651–652
microinjection of D-CHRM-labeled IF proteins, 584
overview, 583
protocols
microinjection of X-rhodamine vimentin, 597–598
purification of bacterially expressed vimentin, 593–594
purification of bovine vimentin, 591–592
transfection of cells with GFP-tagged vimentin, 599–600
X-rhodamine labeling of vimentin, 595–596
Internal ribosome entry site (IRES), 615
Intravital microscopy in the mouse, 475–518
future perspectives, 487
intravital microscopy workstations, 480–482, 480f
conventional single-photon microscopy, 480–481, 480f
multiphoton laser-scanning microscope (MPLM), 480f, 481
optical frequency domain imaging (OFDI), 481–482, 482f
protocols, 488–518
CAM (chick chorioallantoic membrane), 501
corneal pocket assay in rabbits, 500
cranial window preparation in mice and rats, 491–492
dorsal skin chamber preparation in mice, 490
extravascular parameters: interstitial and microvascular PO2 measurements, 515–516
Intravital microscopy in the mouse (continued)
extravascular parameters: interstitial diffusion, convection, and binding, 517–518
extravascular parameters: interstitial pH measurement, 514
liver tumor preparation in mice, 498
lung window preparation in mice, 495–496
mammary fat pad chamber preparation in mice, 493
mammary fat pad preparation in mice, 499
mesentery preparation in mice and rats, 497
mouse ear model, 504–505
pancreatic tumor preparation in mice, 494
rabbit ear chambers, 488–489
tail lymphatics in mice, 502–503
vascular parameters: angiogenesis and hemodynamics, 506–509, 506f
vascular parameters: leukocyte-endothelial interactions, 512–513
vascular parameters: vascular permeability, 510–511
surgical procedures for tissue preparations, 476–480
acute (exteriorized) preparations, 477t, 478f
chronic window preparations, 476, 476f, 477t, 478
examples of preparations for tumor studies, 477t
in situ preparations, 477t, 479–480, 479f
tumor growth and regression, 482–486
collagen dynamics using second harmonic generation, 484, 485f, 486
extravascular parameters, 483, 483t
gene expression, 484
lymphangiography, 483–484, 484f, 486
promoter activity via GFP imaging, 484, 485f
vascular parameters, 483, 483t
Inverse fluorescence recovery after photobleaching (IFRAP), 68, 627–628, 627f
In vivo invasion assay, 455–456, 455f, 458–459
IRES (internal ribosome entry site), 615
IRM (interference reflection contrast microscopy), 157–158, 158f
Isofluorane, 425, 447, 448, 453, 459
J
JRed (fluorescent protein), 12
K
Kaede (fluorescent protein), 16f, 17
Kalman filter, 251–252
Katushka (fluorescent protein), 13
Keima (fluorescent protein), 13
Keratin, GFP-tagged, 586–587, 587f
Ketamine, 448
KikGR (fluorescent protein), 16f, 17
Kindling (fluorescent protein), 17–18
Koehler wide-field epi-illuminator, 125–128
Kymographs, 66f, 666–667
LabVIEW, 289, 450
lac operator, 565–567, 567f
lac operator direct repeats
cell lines containing, establishment of, 546–547
detection limits for, 543–545, 544f
preparation of vector DNA containing, 550–551
purification and sterilization of vector DNA containing, 556
recombinant DNA cloning of, 542–543
strategies for creating engineered chromosome regions, 545–547
subcloning stable transformants, 547–548
transposition of Tn5 transposon with 256mer lac operator repeat and kan/neo selectable marker into BAC DNA, 552–555
Lagrangian strain tensor, 652
Lamins, GFP-tagged, 587–590, 588f, 589f
LAP (linear assignment problem), 274, 275
Laser light, activating photoactivatable proteins with, 638
Lasers
for confocal microscopy, 158–159, 159f
total internal reflection fluorescence (TIRF) microscopy, 680–681, 680f
combining and attenuation, 681
conventional lasers, 681
diode-pumped solid-state (DPSS) lasers, 681
single-mode fiber and, 681
Laser-scanning confocal microscope
(LSCM), 402, 403
LSFM (light sheet–based fluorescence microscopy), 215–216, 216f
Liver tumor preparation in mice, 477t, 478f, 479f, 498
LLC-Pik1 cells, 572–574, 573f, 574f, 574f
Localization, of fluorescent protein fusions, 40
Local-nearest-neighbor (LNN) algorithm, trajectory construction and, 274, 275f
Long-pass filter, 325
Lipid-binding domains as lipid detectors, 531–532
Lipofectamine 2000, 318, 531–532, 612
Liver tumor preparation in mice, 477t, 478f, 498
Lipofectamine 2000, 319, 531–532
localized, 612
Lymphangiography, 483–484, 484f, 486, 503
LysoTracker, 631
M
Machine-learning approach, 307
Macrophage preparation and screening, 410–412, 410f, 411f
Magnetic beads, 260–261
Magnetic pulling, 258f
Magnetic tweezers, 259, 263
Magnetic twisting cytometry (MTC), 258f, 260–264
calibration, 262
cell types, 262
data analysis, 262–263
experimental requirements for, 260–262
imaging, 262
limitations of, 263–264
magnetic beads, 260–261
magnetic-field source, 261–262
protocol, 268–269
schematics, 261f
mAmetrine (fluorescent protein), 13
Mammalian cells
cytoskeleton dynamics and, 611–617
mitosis studies in cultured cells, 571–582
cell synchronization, 578
characteristics of cultured cell lines, 573f
culturing cells for study, 575–578, 579
mitotic phase maintenance, 577–578
mounting coverslips, 576–577, 580–582
protocols, 579–582
growing cultured cells, 579
mounting coverslips for imaging, 580–582
Rose chambers, 576–577, 581, 581f
temperature maintenance, 577
transfection of, 38–41
Mammalian cells, high-content screening, 297–314
assay development, 297–300, 298f, 299f
dimensions and stage-movement strategies, 299f
project workflow, 298f
data handling and processing, 306–313
automatic quality control, 312
classification, 310–311
data mining, 311–312
feature extraction, 310
image-processing strategies to analyze
feature extraction, 310
data mining, 311–312
classification, 310–311
automatic quality control, 312
project workflow, 298f
protocols, 579–582
mounting coverslips, 576–577, 580–582
mitotic phase maintenance, 577–578
Mounting coverslips for imaging, 580–582
Rose chambers, 576–577, 581, 581f
temperature maintenance, 577
transfection of, 38–41
Mammalian cells, high-content screening, 297–314
assay development, 297–300, 298f, 299f
dimensions and stage-movement strategies, 299f
project workflow, 298f
data handling and processing, 306–313
automatic quality control, 312
classification, 310–311
data mining, 311–312
feature extraction, 310
image-processing strategies to analyze
time-lapse image data, 307, 308f
implementation and software packages, 312–313, 313t
segmentation, 309
time series and hit detection, 311
tracking, 309–310
experimental setup, 304–306
environment, 305
spatial resolution, 305
temporal resolution, 304–305
microscopy system requirements, 302–304
automation, 303
compatibility, 304
instruments, table of, 302t
stability, 303–304
sample preparation, 300–302
Mammalian cells, in vivo imaging of, 317–330
cell and media conditions, 321–322
free-radical scavengers, 321
osmolarity, 322
oxygen-depletion systems, 321
pH, 321
pH indicators, 321
cell engineering, 317–319
considerations regarding expressed
fluorescent protein fusions, 318–319
fluorescent protein functionality, 317–318
labeling with small-molecule fluorophores, 318
transfection strategies, 318
evaluation of results, 329–330
establishing criteria for cell viability, 329
fixed cell time-point assays, 330
long-term time lapse, 329–330
image acquisition, 326–329
acquisition system, choice of, 327–328, 328f
photodamage, 326–327
rate of acquisition, 329
two-dimensional vs. three-dimensional images, 326
variability in behavior between different cells, 327
microscope optics, 324–326
aberrations that reduce signal-to-noise ratio, 325–326
fluorescence filter sets, 325
objective-lens correction, 325
objective-lens magnification, 324–325
objective-lens numerical aperture, 324
noise sources, 323–324
detector noise, 323
illumination noise, 323
Poisson or shot noise, 323–324
stray light/spurious photons, 323–324
strategies for maintaining cell viability and health during imaging, 319–322
cell and media conditions, 321–322
environmental control, 319
examination of cells before and during the imaging experiment, 322
imaging chambers, 319–320
imaging nonadherent cells, 322
open vs. closed chambers, 319
temperature control, 320
Mammary fat pad chamber preparation in mice, 493
Mammary fat pad preparation in mice, 478f, 499
Mammary-imaging window, 452–455, 452f
MAP2, 610
MAPK (mitogen-activated protein kinase) pathway, 95
MAPs. See Microtubule-associated proteins (MAPs), GFP-tagged
Materials properties, imaging techniques for relating to biomechanical models, 642
Materials properties, imaging techniques for
visualizing intermediate filament networks, 652–654, 653f
analysis of intermediate filament displacement, 649–652, 650f
choosing a length scale for subcellular analysis, 650–651
computation of displacement index, 651–652
chambers for observation, 643–649
coverslip stability during force application, 643
deforming the endothelial surface using microinjections, 644
device for application of substrate strain, 648–649
flow chambers for application of shear stress, 644–645
fluid dynamics considerations, 644–645, 646f
glass capillary tubes, 647–648
open chambers for access to the cell surface, 644
parallel plate flow chambers, 645–647
parallel plate flow chamber with physical access to the cell surface, 647, 647f, 648f
timing of transient transfaction using green fluorescent protein fusion proteins, 643–644
protocols, 653–657
coating coverslips with microspheres, 655–656
transfection and plating procedure for 4-cm coverslips, 657
reasons for imaging, 641–642
relating to biomechanical models, 642
Mello, Craig, 333
Membrane systems and traffic, imaging, 623–638
construction and expression of organelle-targeted GFP-fusion proteins, 626–627
data analysis, 628–629
calculation of changes in protein concentration, 628–629
membrane movement, 628
imaging chamber setup, 625–626
instrumentation, 623–625
photoactivatable GFP, 628
photobleaching to highlight transport intermediates, 627–628, 627f
protocells
activating photoactivatable proteins with laser light, 638
performing a time-lapse experiment, 633–635
photobleaching with CLSM, 636
photobleaching with older CLSM, 637
reagents and protocols
actin-depolymerizing drugs, 630
aluminum fluoride, 630
ATP depletion, 630
brefeldin A, 629
colchicine, 629–630
drugs, 629–631
dyes, 631
fluorescent protein alternatives, 632
microtubule disruptors, 629–630, 629f
nocodazole, 629–630, 629f
protein synthesis inhibitors, 630
small interfering RNA (siRNA), 631
small-molecule compounds, 630–631
temperature blocks, 631
ts045 vesicular stomatitis glycoprotein
GFP, 631–632, 632f
mEOS2 (fluorescent protein), 17
mEOS (fluorescent protein), 70
Mesentery preparation in mice and rats, 471t, 478, 478f, 497
Metadata, 285
Microscopy

- **Microscope medium (recipe),** 385
- **MPS medium (recipe),** 385
- **MTC. See Magnetic twisting cytometry (MTC)**
- **MTP1 (fluorescent protein),** 9t, 10
- **µManager (micro-manager),** 289
- **Multiphoton imaging, 395t, 401**
- **Multiphoton laser-scanning microscopy (MPLSM)**
- **detector noise, 323**
- **illumination and detection in, 328, 328f**
- **intravital microscopy in the mouse, 475, 480f, 481, 484, 484f**
- **extravascular parameters: interstitial diffusion, convection, and binding, 518**
- **vascular parameters: angiogenesis and hemodynamics, 508**
- **vascular parameters: vascular permeability, 511**
- **Multiphoton microscopy advantages over confocal microscopy, 442–443, 443f**
- **animal models for multiphoton imaging, 444–448**
- **cell lines, 447**
- **mammary tumors, 447–448, 448f**
- **transgenic mice, 444–447, 445f, 446f**
- **cell behavior gene discovery based on, 456**
- **measurement in vivo, 456–457 equipment, 448–451, 449f**
- **fluorophores for, 448–451, 450f, 451f**
- **imaging window, 452–455, 452f**
- **photoswitching, 453–455, 454f**
- **of tumors in vivo, 441–459**
- **animal models, 444–448**
- **collection needles, preparation and handling of, 458–459**
- **gene discovery based on behavioral analysis, 456**
- **intravital imaging at single-cell resolution, 442**
- **invasion and intravasation microenvironments, 446–447, 446f**
- **mammary-invasion window, 452–455, 452f**
- **measurement of cell behavior, 456–457**
- **stereotactic-imaging box, 453, 453f**
- **vasculature visualization, 451–452 in vivo imaging assay, 455–456, 456f, 458–459**
- **Multiple-hypothesis tracking (MHT), trajectory construction and, 274–276**
- **Murine phosphoglycerate kinase promoter, 36**
- **Murine RNA polymerase II promoter, 36**
- **Muscovite mica, as substrate for AFM, 194, 195–196**
- **mWasabi (fluorescent protein), 9t, 10**

N

- **National Institutes of Health (NIH) Image software, 443**

Microinjection

- **Microfluidic chips, 360–361**
- **Methotrexate, 547, 560**
- **MetaMorph (software), 73t, 289**
- **MetaMorph (software), 289**
- **Microrheology, 257–269**
- **Micropatterning cell–substrate adhesions, 258–262**
- **Microlymphangiography, 503**
- **Microscopy.**

Microrheology

- **into Drosophila, 392–393, 392f**
- **of fluorochrome-labeled intermediate filament proteins, 584, 597–598**
- **into mitotic mammalian cells, 577**
- **MetaMorph (software), 73t, 289**
- **MetaMorph (software), 289**
- **Microrheology, 257–269**
- **Micropatterning cell–substrate adhesions, 258–262**
- **Microlymphangiography, 503**
- **Microscopy.**

Micropatterning cell–substrate adhesions

- **description, 259**
- **magnetic pulling, 258f**
- **magnetic twisting cytometry (MTC), 258f, 260–264**
- **microrheology, 257–269**
- **Micropatterning cell–substrate adhesions, 258–262**
- **Microlymphangiography, 503**
- **Microscopy.**

Microlymphangiography

- **MetaMorph (software), 73t, 289**
- **MetaMorph (software), 289**
- **Microrheology, 257–269**
- **Micropatterning cell–substrate adhesions, 258–262**
- **Microlymphangiography, 503**
- **Microscopy.**

Microscopy

- **Microscope medium (recipe), 385**
- **MS2-GFP system, for RNA visualization and quantification components of, 698–699, 699f**
- **fluorescent tagging of MS2 protein, 701**
- **MS medium (recipe), 385**
- **MTC. See Magnetic twisting cytometry (MTC)**
- **MTP1 (fluorescent protein), 9t, 10
- **µManager (micro-manager), 289**
- **Multiphoton imaging, 395t, 401**
- **Multiphoton laser-scanning microscopy (MPLSM)**
- **detector noise, 323**
- **illumination and detection in, 328, 328f**
- **intravital microscopy in the mouse, 475, 480f, 481, 484, 484f**
- **extravascular parameters: interstitial diffusion, convection, and binding, 518**
- **vascular parameters: angiogenesis and hemodynamics, 508**
- **vascular parameters: vascular permeability, 511**
- **Multiphoton microscopy advantages over confocal microscopy, 442–443, 443f**
- **animal models for multiphoton imaging, 444–448**
- **cell lines, 447**
- **mammary tumors, 447–448, 448f**
- **transgenic mice, 444–447, 445f, 446f**
- **cell behavior gene discovery based on, 456**
- **measurement in vivo, 456–457 equipment, 448–451, 449f**
- **fluorophores for, 448–451, 450f, 451f**
- **imaging window, 452–455, 452f**
- **photoswitching, 453–455, 454f**
- **of tumors in vivo, 441–459**
- **animal models, 444–448**
- **collection needles, preparation and handling of, 458–459**
- **gene discovery based on behavioral analysis, 456**
- **intravital imaging at single-cell resolution, 442**
- **invasion and intravasation microenvironments, 446–447, 446f**
- **mammary-invasion window, 452–455, 452f**
- **measurement of cell behavior, 456–457**
- **stereotactic-imaging box, 453, 453f**
- **vasculature visualization, 451–452 in vivo imaging assay, 455–456, 456f, 458–459**
- **Multiple-hypothesis tracking (MHT), trajectory construction and, 274–276**
- **Murine phosphoglycerate kinase promoter, 36**
- **Murine RNA polymerase II promoter, 36**
- **Muscovite mica, as substrate for AFM, 194, 195–196**
- **mWasabi (fluorescent protein), 9t, 10**

N

- **National Institutes of Health (NIH) Image software, 443**
Plants, live cell imaging of, 371–385

Photoswitchable fluorescent proteins, 17–18

Photosynthesis, 290

Photoresist, 43–50, 44f, 49f

Phototax, 610–611, 614

Psi, 615

Pixels, 284

PIRES vector, 615

INDEX

Photolithography, 46–47

PhoA (E. coli), 263–264, 265f

Photometry, 67–68, 68f, 77–78, 82f

Photons, spurious, 323–324

Photons, A. tumefaciens, 373
during cell cycle, 380–385
an imaging assay for plant protein–protein interactions, 375–379

Plus-end tracking proteins (+TIPS), 223–224, 242–243

Photoreceptors, 477t, 500

Threshold-based, 243–244

Photography, 244–245

Photoresist, 64

Plus-end tracking proteins (+TIPS), 115

Photosynthesis, 65

Photons, 64

Phototaxis, 610–611, 614

Photoreceptor, 64

Photomultiplier tube, 64

Photoreceptor, 64

Photomultiplier tube, 64

Photoreceptor, 64

Photoreceptor, 64
Recipes

activated sodium orthovanadate, 116
assembly buffer, 600
ATV solution, 200–201
bind-silane working solution, 51
calcium- and magnesium-free phosphate-buffered saline (CMF-PBS), 562
column buffer, 600
column buffer for inclusion bodies, 601
detergent buffer, 601
dFCS culture medium, 201
dialysis buffer, 602
dialysis buffer for inclusion bodies, 601
disassembly buffer, 602
DMF, 115
Dulbecco's PBS, 536
ECM coating solution, 51
egg salts solution, 366
extraction buffer, 600
extrusion plates, 385
HEPES buffer, 537
homogenization buffer, 601
homogenization buffer for inclusion bodies, 601
imaging buffer, 538
imaging medium, 638
LB liquid medium, 561
LB plates, 561
lipid mix A, 537
lipid mix B, 538
Luria-Bertani (LB) liquid medium, 384–385
microscopy medium, 536
M9 medium, 366
Mowiol mounting medium, 117
MS medium, 385
parafomaldehyde fixative solution (4%), 115
PBS, 116, 602
phosphate-buffered saline (10X), 41, 51, 201, 415
photocconversion blocking buffer, 474
quenching solution, 537
react buffer 2, 561
selection plates, 385
sephadex column buffer, 602
SOC medium, 561
Sorensen's phosphate buffer, 201
staining mix A, 537
staining mix B, 538
staining mix C, 538
TE buffer, 562
TNE, 601
TR buffer, 562
Tris-Cl, 116
Valap, 582
wash buffer, 601
Red fluorescent protein (RFP), 9t, 12–13
Refractive index, 335, 347–349, 675, 676–677, 677f
Region growing, 244–245
Registration, image analysis and, 240, 240f, 246–247, 248f
Resolution, 54, 57–58, 334–336
Rayleigh criterion, 120, 142, 143f, 335, 335f

Spatial, 335
high-content screening in mammalian cells, 305
temporal, 335–336
acquisition speed, 304–305
autofocus speed, 305
filter and shutter times, 305
high-content screening in mammalian cells, 304–305
sample number, 305
sample preparation, 305
stage-motion speed, 305
Resolution test target, 170, 170f, 173
Resolution power
contract-transfer function (CTF) and, 142
point-spread function (PSF) and, 141–142
Rayleigh criterion, 142, 143f
Restoration techniques, 290
Rayleigh criterion, 120, 142, 143f, 335, 201, 415
Rhodamine-transferrin, 631
Ribosomal L30 promoter, 700
RNA, visualization and quantification in
Ribosomal L30 promoter, 700
RNA molecules in each mRNAP, 701
RNA interference (RNAi), 301, 318, 351, 402, 572, 614
RNA FISH, 702, 706–710
Root-growth chamber, preparation of, 382, 383f
Rose chamber, 576–577, 581, 581f, 613, 689
rsCherry (fluorescent protein), 18
rsCherryRev (fluorescent protein), 18
Russ, John, 290
Saccharomyces cerevisiae. See also Yeast, live cell imaging in
actin-GFP protein fusion expression in, 36
light sensitivity, 334
size, 334
Scientific Image Database (SIDB), 294
SDC, See Spinning disk confocal (SDC) microscopy
Second harmonic generation, 442–443, 484, 486
Secretory pathway and associated organelles, 624f
Sedat, John, 203, 206
Segmentation, image, 240, 240f, 243–245
deformable models and, 245
dependence of localization error and, 115
edge-based, 244
region-based, 244–245
Sedat, John, 203, 206
Segmentation, image, 240, 240f, 243–245
deformable models and, 245
dependence of localization error and, 115
degmentation assay, 667–668
future of, 670

motility assay, 673–674
root-growth chamber, preparation of, 382, 383f

Stochastic optical reconstruction microscopy (STORM), 688–670, 679

INDEX = 733
Single-molecule imaging (continued)
total internal reflection fluorescence (TIRF) microscopy, 659–674
dichroic mirrors, 664–665
filters, 664–665
illumination source, 663–664
objectives, 665
setup, 661–663
adjustment of incident angle, 662–663
commercially available systems, 661
laser alignment, 661–662, 662f
total internal reflection fluorescence and spinning-disk confocal (TIRF/SDC) microscope system, 119–138
total internal reflection fluorescence microscope (TIRFM), compared, 678, 678f
tubulin and microtubule-associated proteins (MAPs), 613–614
for in vivo imaging of tumor–stroma interactions, 420, 421f, 424f, 426–431
SPT-PALM. See Single-particle-tracking photobleaching activated localization microscopy
StackReg (software), 731
Staining mix A (recipe), 537
Staining mix B (recipe), 537
Staining mix C (recipe), 537
STEM (stimulated emission depletion), 395t, 403, 404
Stelzer, Ernst, 403
Stereotactic-imaging box, 453, 453f
Stochastic optical reconstruction microscopy (STORM), 667, 668–670, 669f
Stokes–Einstein relation, 264
Stokes shift, 13, 340
STORM (stochastic optical reconstruction microscopy (STORM)), 667, 668–670, 669f
Strain, 258–259, 258f
Stray light/spurious photons, 323–324
Stress, 258–259, 258f
mechanical stress, imaging live cells under, 641–658
Stress-to-strain ratio, 186
Structured illumination methods, 172–174, 174f, 404
Stuurman, Nico, 294
Stulson, John, 352
Superfolder GFP (fluorescent protein), 9t, 16
Support vector machines (SVMs), 311
SVs (support vector machines), 311
SV2 promoter, 36
System biology, quantitative image analysis and, 253
SYTO 14 dye, 608
T
TagBFP (fluorescent protein), 7, 9t
Tagged Image Format File (TIFF), 287
TagGF (fluorescent protein), 10
TagRFP (fluorescent protein), 9t, 11, 13, 294
Tail lymphatics in mice, 477t, 479f, 502–503
Tau, 610
tdEos (fluorescent protein), 17
tdTomato (fluorescent protein), 9t, 11, 70
TE buffer (recipe), 562
Temporal resolution, 335–336
high-content screening in mammalian cells, 304–305
acquisition speed, 304–305
filter and shutter times, 305
sample number, 305
sample preparation, 305
stage-movement speed, 305
Tetracycline inducible or repressible promoters, 612
Tetracycline response element (TRE), 567, 567f
Tetracycline tag, 41
Tetracycline-tagged proteins, 463–465, 467–468, 468f, 469f, 470–471, 632
Texas red dextran, 451–451
TFI (total fluorescence intensity), 702, 709–710
Thermal noise, 58, 62, 64
Theta imaging, 395t
Thick specimens, imaging difficulties in imaging, 139
method of imaging choosing a method, 139–140, 178–179
confocal microscopy, 151–172
decomvolution, 140–150
structured illumination, 172–174
results, 174–180
cromatic aberration, 176, 176f
signal-to-noise ratio, 177–178
spherical aberration, 175–176
three-dimensional reconstruction, 179–180
Thomas, Charles, 356
Thompson, Mike, 356
Three-dimensional structural illumination microscopy (3D-SIM), 204, 207–211
for high spatial resolution analysis, 207–208, 210f, 211f
sample preparation and imaging protocols for, 208–211
Thymidine, 578
TIFF (Tagged Image File Format), 287
Time-lapse images, 284
Caenorhabditis elegans live cell imaging, 294
Drosophila live cell imaging, 388
experiment protocol for confocal laser-scanning microscopy (CLSM), 633–635
fluorescence recovery after photobleaching (FRAP), 81–83
background subtraction, 82, 82f
corrections, 82–83, 82f
image alignment, 81–82
normalization, 82f, 83
photobleaching, 82, 82f
steps in image analysis, 82f
high-content screening microscopy, 307, 308f
movie acquisition, total internal reflection fluorescence (TIRF) microscopy and, 690
Time series, 311
TIRF (total internal reflection fluorescence). See also Total internal reflection fluorescence and spinning-disk confocal (TIRF/SDC) microscope system; Total internal reflection fluorescence (TIRF) microscopy
OMX microscopy, 212
3D, 212
INDEX = 735

Transgenic mice, as animal models for multiphoton imaging, 444–447, 445f, 446f
Transistor–transistor logic (TTL) gating, 681, 684
Transposition, of Tn5 transposon with 256mer lac operator repeat and kan/neo selectable marker into BAC DNA, 552–555
TR buffer (recipe), 562
TRE (tetracycline response element), 567, 567f
Tris-Cl (recipe), 116
TRITC (tetrathymethyl rhodamine isothiocyanate) filter set, 11
T-Sapphire (fluorescent protein), 13
Tubulin, GFP-tagged
construction of, 611–612
examples of tubulin fusion to fluorescent proteins, 607f
history of, 610
microscopy, 613–614
overview, 610
permanent cell lines for expression of, 613, 615–617
transfection of, 612–613
Tumors, multiphoton imaging of, 441–459
advantages of multiphoton microscopy over confocal microscopy, 442–443, 443f
animal models, 444–448
collection needles, preparation and handling of, 458–459
gene discovery based on behavioral analysis, 456
intravital imaging at single-cell resolution, 442
invasion and invrasvasion microenvironments, 446–447, 446f
mammary-invasion window, 452–455, 453f
measurement of cell behavior, 456–457
microscopy equipment, 448–451, 449f
stereotactic-imaging box, 453, 453f
vasculature visualization, 451–452
in vivo invasion assay, 453–456, 455f,
458–459
tumor–stroma interactions, in vivo imaging of, 419–438
anesthesia, long-term, 423
emission selection, 429–430
fast image collection to minimize motion artifacts, 427–428
flexible multicolor excitation, 428–429
fluorescent labeling of tumor components, 423
imaging several tumor regions in same mouse, 422–423
inverted or upright microscope selection, 426–427
microscope system selection, 426
minimally invasive access to tissue, 423–424
mouse care on microscope stage, 425–426
microscope system selection, 426
in vivo invasion assay, 453–456, 455f,
458–459
Tumor–stroma interactions, in vivo imaging of, 419–438
anesthesia, long-term, 423
emission selection, 429–430
fast image collection to minimize motion artifacts, 427–428
flexible multicolor excitation, 428–429
fluorescent labeling of tumor components, 423
imaging several tumor regions in same mouse, 422–423
inverted or upright microscope selection, 426–427
microscope system selection, 426
minimally invasive access to tissue, 423–424
mouse care on microscope stage, 425–426
multiple tumor microenvironments in same mouse
analysis of, 422, 422f
generation of, 420
myeloid cell migration, 427f, 428f
Tumor–stroma interactions, in vivo imaging of (continued)
 objective lenses, 430
 photobleaching, 428f, 431
 protocols, 432–438
 monitoring of vital signs for long-term survival under anesthesia, 436–438
 preparation of mice for long-term intravital imaging of mammary gland, 432–435, 434f
 spinning-disk confocal (SDC) microscopy, 420, 421f, 424f, 426–431
 technical barriers, resolving, 420–431
 vascular leakage, dynamics of, 429f
 x-y stage, 430

Two-photon fluorescence microscopy
 dynamic range, 225
 illumination efficiency, 222
 imaging speed, 225
 lateral and axial extents of point-spread function, 223–224
 photobleaching, 222–223

U
 Unsupervised learning, 307
 Urethane, 425

V
 Valap (recipe), 582
 Van Beneden, Edouard, 351
 Vascular endothelial growth factor (VEGF), 486, 487
 Vasculature visualization, tumor, 451–452
 Vectors
 bacterial artificial chromosome (BAC), 542–543, 546, 552–555, 614
 commercial, 612
 for fluorescent protein fusions, 35–36
 in plants, 373, 376, 381
 pIRES, 615
 Venus (fluorescent protein), 9t, 11
 Vescicular stomatitis glycoprotein-GFP, 631–632, 632f
 Video microscopy, for live imaging of Caenorhabditis elegans, 355–356
 VIGRA, 313
 Vimentin, 583, 584
 analysis of displacement, 649–650, 650f
 GFP labeled, 587, 587f
 characterization of GFP-tagged, 585, 586f
 construction and expression of GFP-tagged, 585
 FRAP analyses of, 587f
 microinjection of X-rhodamine vimentin, 597–598
 purification of bacterially expressed vimentin, 593–594
 of bovine vimentin, 591–592
 recovery of fluorescence in a living cell, 585f
 transfection of cells with GFP-tagged, 599–600
 X-rhodamine labeling of, 595–596
 Viosensor fluorescent proteins, 26–29
 Virtual Cell (software), 73t
 Viscoelasticity, linear, 259
 Viscoelastic modulus, 258f, 260, 261f, 263, 265
 Viscoelastic response of cells, measuring, 259–269
 Viscous modulus, 258f, 259, 261f, 266
 Visible fluorescent protein (VFP)-tagged lipid-binding domains, 524–526
 Volocity (software), 289, 457

W
 Wash buffer (recipe), 601
 Watershed transform, 244–245
 WEKA (software), 313
 Wheelock, Margaret, 37
 White, John, 352
 Wide-field microscopy. See also specific applications
 axial resolution, 169f
 confocal microscopy compared, 152f, 153f, 169f, 178f
 deconvolution, 144–148, 395t
 features, 395t
 illumination and detection in, 328f
 lipid imaging in living cells, 526
 noise levels, 327
 Winoto, Lukman, 204

X
 XML (Extensible Markup Language), 286–287
 X-rhodamine
 labeling of vimentin, 595–596
 microinjection of vimentin, 597–598

Y
 Yeast, live cell imaging in, 333–350
 brightness, 337–342
 camera setup, 341–342
 choosing an objective, 338–339
 dichroic mirrors, 339, 340
 filters, 339–340, 339f, 340f
 future developments in, 349–350
 image information capacity, 336–337
 instrumentation, 345–349
 environmental control devices, 345–346, 345–347
 experimental determination of point spread function, 348–349
 limiting geometric aberrations, 347, 348f
 refractive index matching using immersion media, 347–349
 thermally regulated slide holder, 346–347, 346f
 photodamage, 349
 resolution, 334–336
 sample preparation and mounting, 343–345
 strain choice, 343
 slide preparation, 343–345
 agarose cushion, 343–345, 344f
 mounting cells, 345
 Yellow fluorescent protein (YFP)
 for imaging gene expression in living cells, 567–568, 567f, 569f
 split vectors, 376
 Young’s modulus, 186

Z
 Zebra highlighter pen, 686
 ZsGreen (fluorescent protein), 10, 612