Contents

Foreword by Martin Raff, ix
Preface, xi
Introduction, 1

1 A Matter of Life and Death, 5
2 Caspases and Their Substrates, 15
3 Caspase Activation and Inhibition, 29
4 The Mitochondrial Pathway of Apoptosis, Part I: MOMP and Beyond, 47
5 The Mitochondrial Pathway of Apoptosis, Part II: The BCL-2 Protein Family, 63
6 The Death Receptor Pathway of Apoptosis, 87
7 Other Caspase Activation Platforms, 99
8 Nonapoptotic Cell Death Pathways, 111
9 The Burial: Clearance and Consequences, 127
10 Cell Death in Development, 149
11 Cell Death and Cancer, 163
12 The Future of Death, 177

Figure Credits, 191
Additional Reading, 193
Index, 215
Biologists have been relatively slow to recognize and study the degradation processes that operate in cells, compared with the generative processes. Our understanding of protein degradation, for example, lagged well behind our comprehension of protein synthesis. And so has it been for cell death, where understanding followed many years behind the comprehension of cell division. Although it had long been recognized that cell death can be an important part of normal animal development and tissue homeostasis, it was only in 1972 that Kerr, Wyllie, and Currie drew a clear distinction between the conserved cytological features of these normal cell deaths and the very different features of acute pathological cell deaths. They coined the term apoptosis for the former type of cell death and, importantly, suggested that it might reflect the operation of a conserved intracellular death program, by which animal cells can actively kill themselves in a tidy and controlled way.

This important idea remained largely dormant for almost 20 years, and the study of apoptosis remained confined to a small group of aficionados working on diverse organisms. The big bang in the cell death field came from Horvitz and colleagues at the end of the 1980s and early 1990s with the genetic identification of the intracellular proteins that mediate and regulate apoptosis in the nematode *Caenorhabditis elegans* and, soon thereafter, the demonstration that related proteins operate in similar ways in other animals, including humans. In this way, it rapidly emerged that a family of cysteine proteases—the caspases—mediate the apoptotic death program and that a family of regulatory proteins—the BCL-2 proteins—either activate or repress the program. These spectacular findings indicated that apoptosis is a fundamental property of animal cells and that the proteins that mediate and regulate it have been largely conserved in evolution from worms to humans. The findings launched the subject into the cell biological stratosphere, where it remains to this day, having gone from neglect to hysteria in only a few years.

As the cell death field matured, it became increasingly clear that there are multiple ways of activating and repressing the apoptotic program from both inside and outside the cell. It also emerged that the molecular details can vary from organism to organism
and that other nonapoptotic death programs can operate in animal cells. This added complexity has created a pressing need for a comprehensive stock taking—a cool, clear, overview of cell death that cuts through the detail in a logical and engaging way while making it clear where controversy and mystery remain. The author of Means to an End, a highly respected leader in the field, has achieved all of this admirably. The writing is remarkably clear and is bolstered by simple, informative figures.

Whether you are a cell death expert or a neophyte, or even a retired cell biologist like me, you are likely to find the book informative, clarifying, and enjoyable. If you are a scientist just starting your career in the cell death field, it is unlikely that you will find a better place to identify important unsolved problems on which to work. If you are a drug developer, you will find an enlightened discussion of how one might design drugs to either encourage dangerous cells to kill themselves or discourage transiently injured cells from doing so. All you need to know about cell death is covered here, with panache, and all in fewer than 250 pages—a remarkable achievement.

MARTIN RAFF
London, July 2010
Introduction

Like all living things, cells die. Indeed, a great many cells in our bodies die throughout our lives, and their deaths are essential for our survival. They die by highly conserved mechanisms that may have their evolutionary origins more than 1 billion years ago. This book is about how that death happens and how it contributes to physiological homeostasis and disease. The focus is on cell death in animals and predominantly on only one form of cell death, called apoptosis, for two reasons. First, most cells that die in humans die by apoptosis. Second, it is the type of cell death about which we currently know most. So, although other types of cell death are covered in some detail, most of our discussion concerns apoptosis.

The underlying mechanisms of apoptotic cell death are found throughout the animal kingdom, but probably nowhere else.¹ In all animals studied (including many of the phyla), the features of this type of cell death are the same: The dying cell effectively “packages” itself to be eaten by healthy cells and digested. Furthermore, many of the specific molecules involved in this process are conserved in animals. However, the specific molecular pathways, although similar, can have fundamental differences. Throughout most of this book, we focus on the molecular pathways of apoptosis (and cell death in general) that function in humans. This unabashedly anthropocentric (or, at least, “backbonecentric”) view is our goal, with apologies in advance to those readers who consider themselves “fly people” or “worm people” and those with interests in other organisms.²

¹ There is a literature that explores cell death in other types of organisms, including plants and yeast, and it remains possible that within the cell death mechanisms in such organisms is a vestige of a far more ancient process than we currently suspect. However, the molecules involved in the process are, at best, very distantly related to those in animals, and the actual pathways remain to be elucidated.

² In fact, it is largely owing to those who study such organisms (especially nematodes and insects) that we know so much about the molecular mechanisms of apoptosis, and hence the apology (however flippant it may appear) is meant with sincerity. Robert Horvitz was awarded a Nobel Prize in Medicine and Physiology in 2002 for his pioneering studies of cell death in nematodes.
INTRODUCTION

We will quickly step off into the deep end of the molecular pool with the biochemical mechanisms of cell death. For reasons that will become clear, a “bottom-up” view of cell death by apoptosis comprises the first several chapters. But before we dive in, it may be useful to say a word about how the chapters that follow are organized.

• Chapter 1 is essentially a synopsis, a quick take on the rest of the book. It is a chance to get our bearings and take a stab at the big picture, starting with why cells die and the three major types of cell death. It goes on to outline the molecular mechanisms covered in subsequent chapters.

• Chapters 2 and 3 concern caspases, the proteases that orchestrate apoptosis by cleaving substrates in the cell. Chapter 2 introduces the caspases and explores those substrates that have known roles in apoptosis. We also discuss caspases that are not involved in apoptosis, per se. Chapter 3 considers the biochemistry of activation of different types of caspases, as well as inhibitors of caspases and their roles.

• Chapters 4 and 5 cover the mitochondrial pathway of apoptosis, the major way in which apoptosis occurs, at least in vertebrates. Chapter 4 discusses the events that occur once the mitochondrial pathway is engaged and how this leads to caspase activation. It also introduces the caspase activation pathways of flies and nematode worms, together with ideas on how apoptosis may have evolved. Chapter 5 introduces the BCL-2 family of proteins, whose complex interactions link different signals for cell death to the mitochondria.

• Chapter 6 considers another way apoptosis is engaged in vertebrates—by cell surface death receptors—and how these specialized receptors engage a distinct pathway of caspase activation. This pathway can also link to the mitochondrial pathway to cause apoptosis.

• Chapter 7 looks at additional pathways for caspase activation. One is engaged by signals from infectious organisms and some inert substances and can result in a form of apoptosis but also triggers inflammatory responses. Another pathway involves the most highly conserved of the caspases and how it is activated, but its role in cell death is obscure.

• Chapter 8 explores the other major forms of cell death, necrosis, and autophagic cell death. Chapter 9 covers what happens after a cell dies. Regardless of how it died, a dead cell is rapidly cleared from the body by phagocytosis. But once the cell is gone, there are additional consequences, including effects on the immune system and proliferation of healthy cells.

• Chapter 10 provides examples of cell death in development, exploring how the cell death pathways can be engaged by signals that specify which cells must die. Chapter 11 introduces the idea that cancer is, in part, a disease of defective cell death. It discusses the mechanisms that are in place to prevent cancer and how
these link to the machinery of apoptosis, as well as the roles that cell death may have in promoting cancer and in cancer therapy.

• Chapter 12 explores the mechanisms of cell death as we understand them and how these are tested. These include formal models and their consequences for biology, as well as the practical applications of these mechanisms to the treatment of disease.
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1, 66</td>
<td></td>
</tr>
<tr>
<td>ABC1, 136</td>
<td></td>
</tr>
<tr>
<td>ABC7, 136</td>
<td></td>
</tr>
<tr>
<td>ABT-737, 184–185</td>
<td></td>
</tr>
<tr>
<td>Acinus, caspase cleavage, 22</td>
<td></td>
</tr>
<tr>
<td>Adaptive immunity, impact of dying cells,</td>
<td>144–146</td>
</tr>
<tr>
<td>Adenosine nucleotide transporter (ANT), 56</td>
<td></td>
</tr>
<tr>
<td>AIF. See Apoptosis-inducing factor</td>
<td></td>
</tr>
<tr>
<td>AIM2 inflammasome, 105</td>
<td></td>
</tr>
<tr>
<td>AKT, 22, 77, 122, 164, 174</td>
<td></td>
</tr>
<tr>
<td>AMPK, 122</td>
<td></td>
</tr>
<tr>
<td>Annexin V, 130</td>
<td></td>
</tr>
<tr>
<td>Anoikis, 76–77</td>
<td></td>
</tr>
<tr>
<td>ANT. See Adenosine nucleotide transporter</td>
<td></td>
</tr>
<tr>
<td>Antagonistic pleiotropy, 164</td>
<td></td>
</tr>
<tr>
<td>Anthrax toxin, 105</td>
<td></td>
</tr>
<tr>
<td>AP-1, 93</td>
<td></td>
</tr>
<tr>
<td>APAF1, 49–51, 54, 57–58, 60, 78–79, 106–107, 155</td>
<td></td>
</tr>
<tr>
<td>APO-1. See CD95</td>
<td></td>
</tr>
<tr>
<td>Apoptosis</td>
<td></td>
</tr>
<tr>
<td>bottom-up view, 8–9</td>
<td></td>
</tr>
<tr>
<td>clearance of cells. See Clearance, dead cells</td>
<td></td>
</tr>
<tr>
<td>definition, 6</td>
<td></td>
</tr>
<tr>
<td>inducers, 12–13</td>
<td></td>
</tr>
<tr>
<td>pathways. See Death receptor pathway; Mitochondrial pathway</td>
<td></td>
</tr>
<tr>
<td>Apoptosis-inducing factor (AIF), 55</td>
<td></td>
</tr>
<tr>
<td>ARK, 58–59, 152</td>
<td></td>
</tr>
<tr>
<td>ASC, 100–101</td>
<td></td>
</tr>
<tr>
<td>ATG5, 120–121, 124, 153</td>
<td></td>
</tr>
<tr>
<td>ATG7, 153</td>
<td></td>
</tr>
<tr>
<td>ATG10, 121</td>
<td></td>
</tr>
<tr>
<td>ATG12, 120–121, 124</td>
<td></td>
</tr>
<tr>
<td>ATG13, 120–121</td>
<td></td>
</tr>
<tr>
<td>ATG16, 121</td>
<td></td>
</tr>
<tr>
<td>Autophagic cell death</td>
<td></td>
</tr>
<tr>
<td>definition, 6, 123</td>
<td></td>
</tr>
<tr>
<td>overview, 118–119</td>
<td></td>
</tr>
<tr>
<td>Autophagy</td>
<td></td>
</tr>
<tr>
<td>cancer, 175–176</td>
<td></td>
</tr>
<tr>
<td>mitochondria. See Mitophagy pathway, 120–123</td>
<td></td>
</tr>
<tr>
<td>survival mechanism, 119–120</td>
<td></td>
</tr>
<tr>
<td>Baculovirus IAP repeat (BIR), 42–43</td>
<td></td>
</tr>
<tr>
<td>BAD, 74–75, 83</td>
<td></td>
</tr>
<tr>
<td>BAI1, 134</td>
<td></td>
</tr>
<tr>
<td>BAK, 64–73, 83–84, 125, 154–155, 158–171</td>
<td></td>
</tr>
<tr>
<td>BAX, 64–66, 68–73, 83–84, 125, 154–155, 158, 170</td>
<td></td>
</tr>
<tr>
<td>BCL-2 proteins. See also specific proteins</td>
<td></td>
</tr>
<tr>
<td>anti-apoptotic proteins, 66–68, 77–78</td>
<td></td>
</tr>
<tr>
<td>autophagy regulation, 122</td>
<td></td>
</tr>
<tr>
<td>bacterial toxins in origin, 81–82</td>
<td></td>
</tr>
<tr>
<td>BH domains, 63–64</td>
<td></td>
</tr>
<tr>
<td>BH3-only proteins, 68–73</td>
<td></td>
</tr>
<tr>
<td>cancer modulation, 169–171</td>
<td></td>
</tr>
<tr>
<td>classification, 9</td>
<td></td>
</tr>
<tr>
<td>invertebrates, 78–79</td>
<td></td>
</tr>
<tr>
<td>miscellaneous functions, 82–86</td>
<td></td>
</tr>
<tr>
<td>mitochondrial function, 83–86</td>
<td></td>
</tr>
<tr>
<td>phosphorylation, 77–78</td>
<td></td>
</tr>
<tr>
<td>structural homology, 81</td>
<td></td>
</tr>
<tr>
<td>therapeutic targeting, 184–185</td>
<td></td>
</tr>
<tr>
<td>types, 63–64</td>
<td></td>
</tr>
<tr>
<td>viral proteins, 80–81</td>
<td></td>
</tr>
<tr>
<td>BCL-xl, 66, 68, 75, 77–78, 81, 173</td>
<td></td>
</tr>
<tr>
<td>Beclin-1, 85–96, 120–121, 175</td>
<td></td>
</tr>
<tr>
<td>BID, 70, 73–74, 95–97, 170</td>
<td></td>
</tr>
<tr>
<td>BIM, 70–71, 74–76, 154–155, 160–161</td>
<td></td>
</tr>
<tr>
<td>BIR. See Baculovirus IAP repeat</td>
<td></td>
</tr>
<tr>
<td>Bistability in cell death pathways, 180–182</td>
<td></td>
</tr>
</tbody>
</table>
Cancer
- apoptosis and proliferation, 163–166
- apoptosis as Achilles heel, 174–175
- autophagy, 175–176
- frequency, 163
- p53
 - activation, 167–168
 - cytosolic protein function in apoptosis, 171–172
 - DNA-damage induction, 168
 - invertebrate apoptosis, 172–173
 - mutation and cancer susceptibility, 168–169
 - target genes, 169–171
- tumor-suppressor proteins, 166, 173–174

CARD. See Caspase-recruitment domain

Caspase. See also specific caspases
- activation
 - death folds and adapter protein interactions, 34–35
 - executioner caspases, 29–31
 - initiator caspases, 31–34, 36–37
 - mitochondrial activation, 49–51
- domains, 17–18
- inhibitors
 - endogenous inhibitors, 40
 - synthetic inhibitors, 41
 - viral inhibitors, 42–45
- invertebrates, 18
- mechanism of action, 15–16
- membrane blebbing, 25–26
- mitochondrial effects, 26
- substrate specificity, 19–23
- types, 16–17

Caspase-1
- activation by inflammasomes
 - AIM2 inflammasome, 105
 - ASC role, 100–101
 - IPAF inflammasome, 103–104
- NLRP1 inflammasome, 105
- NLRP3 inflammasome, 103–104
- Nod-like receptors, 101–102
 - overview, 99–100
 - Toll-like receptor role, 101
 - functional overview, 38–39
 - mechanism of cell death, 106
- Caspase-2
 - activation, 108–109
 - function, 39
- Caspase-3
 - activation, 30–31
 - inhibition, 41
 - knockout mouse, 28
 - substrate specificity, 21
- Caspase-6, activation, 30
- Caspase-7
 - activation, 30–31, 106
 - knockout mouse, 28
- Caspase-8
 - activation by dimerization, 37
 - inhibition, 45
 - necroptosis inhibition, 118
- Caspase-9
 - activation by dimerization, 36
 - knockout mouse, 28, 51, 155
- Caspase-12, 38, 40
- Caspase-activated DNase (CAD), 24–26, 141
- Caspase-independent cell death (CICD)
 - mechanisms, 55
 - mitochondrial outer membrane permeabilization role, 54
- Caspase-recruitment domain (CARD), 35, 37, 49, 58, 99–100, 108
- β-Catenin, caspase cleavage, 22
- CD31, 131
- CD36, 135–136
- CD47, 130–131
- CD68, 135
- CD95
 - apoptosis induction mechanism, 89–92
 - hepatocyte mitochondrial pathway of apoptosis, 97–98
 - induction by p53, 170
 - knockout mouse, 92, 116
 - ligands, 87
 - signaling defects and lymphoproliferative disease, 92
- CDK1, 125, 136–138
- CED2, 139
INDEX

CED3, 18, 27, 37, 57, 150–151
CED4, 58–59, 78, 84, 150–151
CED5, 139
CED6, 138
CED7, 136–137
CED9, 58, 78–79, 84, 151
CED10, 138
CED12, 139
CEP1, 173
CES1, 150–151
CES2, 150
CICD. See Caspase-independent cell death
Clearance, dead cells
adaptive immunity impact of dying cells, 144–146
autoimmune disease implications, 146–147
bind-me signals on dying cells
bridging molecules, 130–132
invertebrates, 135–138
overview, 129–130
phagocyte receptors, 133–135
clear-me process, 141–142
compensatory proliferation, 147–148
don’t-eat-me signals, 130–131
eat-me signals, 138–141
find-me signals, 128–129
innate immunity impact of dying cells, 142–143
overview, 127–128
tether and tickle model, 133
Combinatorial peptide library, caspase substrate specificity studies, 20–21
Compensatory proliferation, 147–148
Cornification, definition, 8
CRKII, 140
CrmA, 45
Croquemort, 136–137, 153
Cyclophilin D, 115, 187
Cyclosporin A, 115–116, 187
Cytochrome c, 50–52
Cytotoxic T lymphocyte, apoptosis induction, 31–32
Damage-associated molecular patterns (DAMPs), 100–101, 128–129, 143–145
Damm, 18
DAMPs. See Damage-associated molecular patterns
DCP1, 18
DD. See Death domain
Death domain (DD), 35, 88–90, 93–94
Death effector domain (DED), 35
Death receptor pathway. See also specific receptors
CD95, 89–92
invertebrates, 98
mitochondrial pathway involvement, 95–98
necrosis role, 116–118
overview, 11
receptors and ligands, 87–89
TNFR1 signaling, 93–95
TRAIL-induced apoptosis, 93
Death-inducing signaling complex (DISC), 90–91
DeBCL, 79, 84
Decapentaplegic (Dpp), 147
DED. See Death effector domain
Development, apoptosis role
cell selection
neurons, 157–158
T cells, 158–161
Drosophila metamorphosis, 152–154
nematode development, 149–152
vertebrate development, 154–157
dFADD, 98
DIFF45. See Caspase-activated DNase
Diablo. See Smac
dIAP1, 42, 44, 58–60, 152
DISC. See Death-inducing signaling complex
DNA damage
autophagy induction, 123
cell death induction, 113
p53 induction, 168
DOCK180, 139–140
Dpp. See Decapentaplegic
DR4, TRAIL, 87
DR5
induction by p53, 170
TRAIL, 87
DR6, 87
DRAM, 124
Draper, 138, 152
Dredd, 37, 98
Drice, 18, 152
Dronc, 27, 37, 42, 57–58, 60, 152
Drosophila metamorphosis, cell death, 152–154
DRP-1, 84
E74, 152–153
E93, 152–153
Ecdysone, 153
EGL1, 79, 84, 150–151
ELMO, 139–140
Endonuclease G, 55
ERK, 75
Excitotoxicity, necrosis induction, 113–114
Executioner caspases
 activation, 29
 mitochondrial effects, 26
 substrates, 23
 types, 16
FADD, 89–92, 94, 124
Fas. See CD95
FKS06, 183–184
FKB12, 183
FLIP
caspase-8 interactions in activation, 37
CD95 apoptosis induction mechanism, 91–92
necroptosis inhibition, 118
FOXO3a, 74–75
Gas6, 131, 134
GATA-1, caspase cleavage, 22
Gelsolin, caspase cleavage, 22
Gene therapy, 183
Granzyme B, apoptosis induction, 31–32
GSK3, 77, 187–188
GULP, 138
Hermaphrodite-specific neuron (HSN), 150
Hid, 152
HIF-1, 85
HLH2, 150
HLH3, 150
HMGB1, 145
Horvitz, Robert, ix, 1
HRK, 157
HSN. See Hermaphrodite-specific neuron
HtrA2. See Omi
IAP. See Inhibitor of apoptosis protein
iCAD, 22, 24–25, 141
IL-33, caspase cleavage, 22
Immunogenic apoptosis, 145
Inflammasome. See Caspase-1
Inflammatory caspases
 function in secretion and cell death, 38–39
 overview, 17
Inhibitor of apoptosis protein (IAP), 42–44, 53, 60, 182
Innate immunity, impact of dying cells, 142–143
Initiator caspases
 activation, 32–34, 36–37
 overview, 16
IP3 receptor, BCL-2 modulation, 83
IPAF inflammasome, 103–104
Ischemia/reperfusion injury
 mitochondria role, 115–116
 potassium and calcium changes, 114s
JNK, 75, 93–94, 160
Lamin A/C, caspase cleavage, 22
Lamin B1, caspase cleavage, 22
LC3, 120–121
LDL. See Low-density lipoprotein
Li-Fraumeni syndrome, 168–169
Low-density lipoprotein (LDL) oxidation, 135
LOX1, 135
LPA. See Lysoosphatidic acid
LRP1, 135–136, 138
Lysoosphatidic acid (LPA), 128
MALT, caspase-8 interactions in activation, 37
Mannose-binding lectin (MBL), 132
MAPK. See Mitogen-activated protein kinase
MBL. See Mannose-binding lectin
MCL-1, 66, 68, 69, 77, 173
MDM2, 181, 185
MER, 134
MFG-E8. See Milk fat globulin-E8
Milk fat globulin-E8 (MFG-E8), 131, 134
Mitochondrial outer membrane permeabilization
Mitochondrial pathway
caspase activation, 49–51
caspase-independent cell death, 54–55
death receptor pathway involvement, 95–98
 Just So Story of mitochondria and cell death,
 47–48, 81–82, 106–107
 overview, 9–11
Mitochondrial permeability transition (MPT),
 55–57, 115, 187
Mitogen-activated protein kinase (MAPK), 75
Mitophagy, BCL-2 role, 84–86
Mitotic catastrophe, 111, 124–125
MOMP. See Mitochondrial outer membrane
 permeabilization
MPT. See Mitochondrial permeability transition
Mst1, caspase cleavage, 22
mTOR, 122
MULE, 77
Myc, 163–165, 171
NADH, depletion, 113
NADPH oxidase, 113
NAIP5, 105
NDUFS1, 22, 26, 145
Necroptosis, 116–118
Necrosis
 apoptosis comparison, 112
 death receptor role, 116–118
 definition, 7
 excitotoxicity, 113–114
 ischemia/reperfusion injury, 114–116
 PARP role, 112–113
 secondary necrosis, 112
Necrostatins, 117
Nematode development, cell death, 149–152
NEMO, 93
Neuron, apoptosis in selection, 157–158
NF-κB. See Nuclear factor-κB
NIX, 84–85
NLRP1 inflammasome, 105
NLRP3 inflammasome, 103–104
NLRs. See Nod-like receptors
Nod-like receptors (NLRs), 101–107, 143
NOXA, 170
Nuclear factor-κB (NF-κB), 93–94
Omi, 53, 60–61
P2Xr, 100–101
p35, baculovirus, 45
p53
 activation, 113, 167–168
 cytosolic protein function in apoptosis, 171–172
 DNA-damage induction, 168
 invertebrate apoptosis, 172–173
 mutation and cancer susceptibility, 168–169
 target genes, 169–171
PAK-2, caspase cleavage, 22, 25
PAMPS. See Pathogen-associated molecular patterns
PARP. See Poly-ADP-ribose polymerase
Pathogen-associated molecular patterns (PAMPs), 100–101, 143
Pattern-recognition receptors (PRRs), 143
Permeability transition pore (PTP), 55–57, 115
Peroxisome proliferator-activated receptor γ (PPARγ), 142–143, 147
Phagocytosis. See Clearance, dead cells
Phagosome, 141
Phosphatidylserine
 bind-me signal on dying cells, 129
 bridging molecules, 131–133
 receptors, 134
 Phosphoinositide-3-kinase (PI3K), 120–121
 Phospholipase A2, 147
PI3K. See Phosphoinositide-3-kinase
PIDD, 108–109
PIDDosome, 108–109
PI3K, 174
Poly-ADP-ribose polymerase (PARP)
 caspase cleavage of PARP-1, 22
 necrosis role, 112–113
Protein-5, 131
PRRs. See Pattern-recognition receptors
PTEN, 174
PTP. See Permeability transition pore
PUMA, 70, 170, 172
PyD. See Pyrin domain
Pyrin domain (PyD), 35, 100
Pyroptosis, 111
RAC1, 138–140
RAIDD, 108
Reaper, 152
Relish, 98
RHOG, 140
RIP-1, caspase cleavage, 22
RIPK1, 93–94, 117–118, 186
RIPK3, 117, 186
ROCK-1, caspase cleavage, 22, 25
Scavenger receptors, 135
SIRPα, 131
Smac, 52–53, 60–61
SOCS1, 143
Stabilin-2, 134
Surfactant proteins, 132
Systemic lupus erythematosis, 146–147
T cell
 apoptosis in selection, 158–161
 cytotoxic T lymphocyte apoptosis induction, 31–32
TCTP. See Translationally controlled tumor protein
TGF-β. See Transforming growth factor-β
Thrombospondin-1, 131
TIM4, 134
TLRs. See Toll-like receptors
TNF-receptor associated factor-2 (TRAF-2), 93
TNFR1
 apoptotic signaling, 93–95, 98
 ligands, 87
Tolerogenic apoptosis, 145
Toll-like receptors (TLRs), 101, 143
TORC1, 122
TORC2, 122
TRADD, 93–94, 117
TRAF, 93–94, 117
TRAF-1, caspase cleavage, 22
TRAF-2. See TNF-receptor associated factor-2
TRAIL receptor-1. See DR4
TRAIL receptor-2. See DR5
Transforming growth factor-β (TGF-β), 143, 146
Translationally controlled tumor protein (TCTP), 168
TRIO, 140

Tumor necrosis factor receptors. See Death receptor pathway
ULK1, 121
VDAC. See Voltage-dependent anion channel
Vertebrate development, cell death, 154–157
Vimentin, caspase cleavage, 22
Voltage-dependent anion channel (VDAC), 56
VPS34, 120–121
WD domain, 50, 58, 60
XIAP, 22, 43–44, 53, 61, 96–98